Symmetry, Topology and
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Organizing Principles for Understanding Matter

Symmetry

®* What operations leave a system
invariant?

® Distinguish phases of matter
by symmetries

symmetry group p31m

Topology

®* What stays the same when a
system is deformed?

® Distinguish topological phases
of matter genus =0




Symmetry, Topology and
Electronic Phases of Matter

|.  Introduction
- Topological band theory

.  Topological Insulators in 2 and 3 Dimension
- Time reversal symmetry & Boundary States
- Experiments: Transport, Photoemission

lll.  Topological Superconductivity
- Majorana fermion bound states
- A platform for topological quantum computing?

V. The Frontier

- Many more examples of topological band phenomena
- Beyond band theory: states combining topology and
strong interactions

Thanks to :
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The Insulating State

Characterized by energy gap: absence of low energy electronic excitations

Covalent Insulator Atomic Insulator The vacuum
e.g. intrinsic semiconductor e.g. solid Argon
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Topology and Adiabatic Continuity

Insulators are topologically equivalent if they can be continuously
deformed into one another without closing the energy gap

genus =0

Are there “topological phases” that are not adiabatically connected
to the trivial insulator (ie the vacuum) ?




The Integer Quantum Hall State

2D Cyclotron Motion, Landau Levels

E
Q @ Q@ I I Egep =100,
00 Qy
Q Q @

Energy gap, but NOT an insulator
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Topological Band Theory

Thouless et al., 1982: The distinction between a conventional

insulator and the quantum Hall state is a topological property
of the band structure.

®* When there is an energy gap, the occupied electronic states David Thouless
(valence bands) vary smoothly as a function of momentum k
and can be classified by an integer topological invariant .

Integer Chern (or TKNN) number:

n= Zim N d?k - <Vku(k) | X | Vku(k)> e /, u(k) = Bloch wavefunction

®* n characterizes the quantized Hall conductivity:

Insulator: n=0 ; IQHE state: o,, =ne?h

® Similar to a winding number: i E

n=0 n=1 n=2



Edge States Halperin ‘82

Classical : Skipping Orbits WMAN

Quantum : 1D Chiral Dirac Fermions E=vp

conduction band Bert Halperin
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valence band

—ni/a 0 K m/a
Chiral edge states are topologically protected

- Electric current flows without dissipation

- Precisely quantized conductance
- Insensitive to disorder

Bulk-Boundary Correspondence : (related to index theorems in mathematics)

- Bulk Invariant =

Boundary Invariant
- Chern number n =

# chiral edge modes



Time Reversal Symmetry
Under the reversal of the direction of time :
®* Magnetic Field :
B — -B |

® Chiral Edge state :

—_——— —
Right mover — Left mover »

® Spin Angular Momentum :
3.(r) = @, (r)* spin Y2 electron

S = =S ,mspm S
* Kramers’ Theorem: T2=-1: g e » e

For spin % particles with T symmetry
all states are at least two fold degenerate.
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“spin up” “spin down”

The integer quantum Hall state requires broken time reversal symmetry.
Are there topological phases with unbroken time reversal symmetry?



Quantum Spin Hall Insulator

Simplest version : 2 copies of quantum Hall effect g2t shang 06
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Predict inversion of conductance and valence : Inverted (d>d,) |
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Measure electrical conductance due to edge states (Vg =Vinr) / V



Moore & Balents ‘06;

3D Topological Insulator ~ roys

Fu & Kane '06

3D insulators are characterized by four Z, topological invariants
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< Conducting
surface

3D

“Surface Dirac Cone”

BI Se ARPES Experiment : Y. Xia et al., ‘09
2 3 Band Theory : H. Zhang et. al, ‘09

® Energy gap: A~ .3eV:
A room temperature topological
insulator

® Simple surface state structure :
A textbook Dirac cone, with a

. Angle resolved photoemission

Spln texture spectroscopy ( Xia et al ‘09)




Surface of a topological insulator: A route to new gapped topological states

|. Break time reversal symmetry : “Half integer” Quantum Hall Effect
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1. Orbital QHE: 1
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2. Magnetic insulator on surface : Chiral Dirac fermion at domain wall

3. Quantum anomalous Hall effect recently observed in thin film
magnetic topological insulators C-Z Chang, ... Q-K Xue, et al. Science ‘13

Il. Break gauge symmetry : Superconducting Proximity Effect

A route to topological superconductivity
using ordinary superconductors

S wave superconductor

Topological insulator




Topological Superconductivity

Key ingredients of BCS model of superconductivity :

A A

E E
® Similar to insulator: energy gap 9 c.b.
for quasparticle excitations —

same state
® Intrinsic Particle — Hole symmetry v.b. v.b.
/

Y A

1D Topological Superconductor (Kitaev 2000) AL
® Two topological classes 1D superconductor 04+—9
END )

® Protected zero energy Al

end state v
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Particle = Anti particle E El___
® Defines a Majorana Fermion bound state o + —@— — 0 70—

same state

® “Half” an ordinary particle e T

A 4

7/To:7/0



In search of Majorana

1937 . Majorana publishes his modification
of the Dirac equation that allows spin %2
particles to be their own antiparticle.

1938 . Majorana mysteriously disappears at sea

2013 : Italian police concludes Majorana was alive Ettore Majorana
in Venezuela until the 1950’s. * 1906-1938?

Observation of a Majorana fermion is among the great challenges of physics today

Particle physics :
Fundamental particles (eg neutrino) might be Majorana fermions

Condensed matter physics:
Kitaev ‘03: Zero energy Majorana bound states provide a new
method for storing and manipulating quantum information

® 2 Majorana bound states store 1 qubit of quantum
information nonlocally

* |mmune from local sources of decoherence

* “Braiding” can perform quantum operations Alexei Kitaev



Quest for Majorana in Condensed Matter

Superconducting Proximity Effect: Use ordinary superconductors and topological materials
to engineer topological superconductivity

Superconductor - Topological Insulator Devices Expt: Hart, ... Yacoby “14 (HgTe):
Theory: Fu, Kane ‘07, ’08 Pribiag, ... Kouwenhoven ‘14 (InAs/GaSb)
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“Two slit” interference pattern in a S-TI-S Josephson Junctio
Demonstrates edge superconductivity

Quantum Spin Hall Insulator

Superconductor - Semiconductor Nanowire Devices | i conductance
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Theory:

Lutchyn, Sau , Das Sarma ‘10 B R
Oreg, Refael, von Oppen ’10 J 3
InSh :
Expt: Mourik, ...Kouwenhoven ‘12 SC nanowire Majorana
| end mode ,
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Ferromagnetic Atomic Chains STM Spectroscopy
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Nadj-Perqg, ..., Yazdani 14 (Fe on Pb)
Majorana
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A Vast Frontier I: Many more examples of topological
Band Phenomena

Example: Symmetry protected topological semimetals

1. Graphene
2D Dirac point
H=vo:p

2D Dirac points protected by
inversion symmetry,
time reversal symmetry,
spin rotation symmetry (no spin orbit)

2. 3D Dirac Semimetal R o

3D Dirac points with strong spin-orbit 3D Dirac point

o5

protected by g =
time reversal symmetry = H=vy-p
space group symmetries "é

Observed in many real materials \@’

Current status :

® Strong interaction between theory, computation and experiment.
®* Many real materials have been shown to exhibit topological band phenomena.



A Vast Frontier Il : states that combine band topology and
strong interactions

Strongly interacting systems can exhibit intrinsic topological order,
which is distinct from band topology in insulators.

® Excitations with fractional quantum numbers
®* Long ranged quantum entanglement in ground state
® Ground state degeneracy depends on topology of space

Example: Laughlin state of fractional quantum Hall effect

Can we engineer topologically ordered states in materials or devices?

Fractional Chern Insulators ?

Fractional Topological Insulators ?

Fractional Majorana Fermions (aka Z, parafermions) ?
... and beyond

Current status :

®* There has been much recent progress in models for such states.
®* More work needs to be done to achieve them in the real world.



Conclusion

® Symmetry and Topology provide a powerful framework for the discovery
of novel electronic phases with protected low energy states.

- topological insulators in 2D and 3D
- topological superconductivity
- topological semimetals

® Experimental Challenges

- Perfect known topological materials and discover new ones
- Superconducting, Magnetic structures
- Create heterostructure devices

® Theoretical Challenges

- Materials physics :

- Many body physics :

predicting and optimizing materials
for topological phases

What phases are possible

and how can you make them?



