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Inflation	can	start	at	the	Planck	density	if	there	is	a single	Planck	
size	domain with	a	potential	energy	V	of	the	same	order	as	kinetic	
and	gradient	density.	This	is	the	minimal	requirement,	compared	
to	standard	Big	Bang,	where	initial	homogeneity	is	requires	across	
1090 Planck	size	domains.
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FIG. 2: Trinomial Inflation. We plot r vs. ns for fixed values of the asymmetry parameter h and the field z varying along the
curves. The red curves are those of chaotic inflation with h ≤ 0 (only the short magenta curve has positive h), while the black
curves are for new inflation. The color–filled areas correspond to 12%, 27%, 45%, 68% and 95% confidence levels according
to the WMAP3 and Sloan data. The color of the areas goes from the darker to the lighter for increasing CL. New inflation
only covers a narrow area between the black lines while chaotic inflation covers a much wider area but, as shown by fig. 9,
this wide area is only a small corner of the field z - asymmetry h plane. Since new inflation covers the banana-shaped region
between the black curves, we see from this figure that the most probable values of r are definitely non-zero within trinomial
new inflation. Precise lower bounds for r are derived from MCMC in eq.(5.2).
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Therefore, we reach the Harrison-Zeldovich spectrum ns = 1, r = 0 as a limiting value. This is a strong coupling
regime y → ∞ where in addition we must keep the ratio M/(h + 1)

1
4 fixed for h → −1+ since it is determined by the
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Polynomial	inflation:
Simplest	quadratic	model	predicts	too	large	amount	of	the	gravitational	waves.	However,
it	can	be	trivially	generalized	to	avoid	this	problem,	while	still	offering	the	possibility	of	
inflation	beginning	at	the	Planck	density	
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3	observables:		As,	ns,	r

3	parameters:		m,	a,	b

But the best fit is provided by models with plateau potentials

Destri,	de	Vega,	Sanchez,	2007
Nakayama,	Takahashi	and	Yanagida,	2013
Kallosh,	AL,	Westphal 2014
Kallosh,	AL,	Roest,	Yamada		1705.09247

Example:	m	=10-5,	a	=	0.12,	
b=0.29





First models of cosmological attractors 
and their subsequent generalizations



Planck	2013

We	constructed	superconformal version	
of	the	theory	with	arbitrary ⇠June	2013



Minimal	coupling	to	gravity

Conformal	coupling	to	gravity
(conformal	invariance	is	broken	by	
the	Einstein	term	R)

⇠ = 0

⇠ = �1

6

Agreement	with	data	for	a	quartic	potential	for		 ⇠ & 0.002

When	 ⇠ = 0.1 the	asymptotic	values	of	ns and	r	are	reached

Standard	model	Higgs	inflation	requires
and	gives	practically	the	same	ns and	r	

⇠ ⇡ 104

r =	0.3,			too	big
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Is	it	possible	to	have	local	conformal	symmetry	(Weyl	symmetry)	for

⇠ 6= �1

6
This	is	against	the	intuition	of	General	Relativity,	but	totally	natural	
in	superconformal framework	

In	General	Relativity	even	with	many	scalars	which	live	in	a	real	
moduli	space	one	would	still	 expect	Weyl	symmetry	only	if

⇠ = �1

6
The	reason	why	it	is	possible	to	have	an	effective	
arbitrary								has	to	do	with	the	feature	of	the	
scalar	moduli	space	called	Kahler	geometry

⇠

Note,	that	for	the	
superconformal
symmetry	it	is	necessary
to	have	Kahler geometry

One	could	have	used	
Kahler geometry	in	
bosonic	models,	but	in	
supersymmetric	ones	it	
was	natural

1306.3211



This ansatz may be associated either with the gauge-fixing of the local Weyl-R-symmetry of
the superconformal action, or viewed as a part of a solution of all field equations following
from the superconformal action. In this latter case, one may think of the origin of the Planck
mass M

P

in this model as a spontaneous breaking of Weyl symmetry, via solution of equations
of motion, since M

P

does not appear in the original locally conformal action (3.1). With the
ansatz (3.18) the action simplifies and becomes a part of the supergravity action
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The model has symmetry
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We make a choice � � 1/6 + ⇠ > 0 where the model has a minimum at '
2

= 0 and it is
reduced to
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where '
1

⌘ '. Thus, starting with spontaneously broken conformal symmetry, we have
reproduced the model �

4

�4 � ⇠

2

�2R studied recently in [3, 4], as well as the Higgs inflation
models [6, 8–12] where ⇠ is a parameter of a non-minimal coupling to gravity. The di↵erence is
that in all these models, but [10, 12] conformal symmetry was absent (i.e. broken explicitly).
The new interpretation of the parameter ⇠ in our superconformal model with the embedding
Kähler potential (3.11) is that at ⇠ = 0 the Kähler potential has an enhanced symmetry
(3.14), (3.15) between the inflaton and a conformon.

3.3 Explicit Proof of Conformal Symmetry of the Action with Arbitrary �

Here we would like to explain why the action (3.3) has a local conformal symmetry for an
arbitrary parameter �. This is rather surprising from the point of view of the models with
scalars conformally coupled to gravity, which were studied in the cosmological literature in
the past. This action has a local conformal symmetry (3.6). The Kähler potential of the
embedding manifold3 N (X, X̄) is required to have the following properties [20], [10, 12, 24].
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3It is interesting that the Kähler potential of the embedding manifold does not allow Kähler transforma-
tions N (X, X̄) ! N (X, X̄) + f(X) + f̄(X̄).

– 9 –

The	final	result	is	that	the	following	theory	describing	two	real	
scalars	is	(nearly)	conformally invariant.	(As	before,	the	
invariance	is	broken	only	by	the	first	(Einstein)	term.)

It	would	be	very	difficult	to	guess	this	form	or	derive	this	result	
without	using	Kahler geometry	(or	using	supergravity	and	then	
ignoring	fermions).

The	way	to	study	it	is	to	start	with	a	conformally invariant		theory	
of	2	complex	fields,	one	of	which	(conformon)	can	be	removed	
by	a	gauge	transformation.	(More	about	it	later.)
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A universal attractor for inflation at strong coupling
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We introduce a novel non-minimal coupling between gravity and the inflaton sector. Remarkably,
for large values of this coupling all models asymptote to a universal attractor. This behavior is
independent of the original scalar potential and generalizes the attractor in the �4 theory with
non-minimal coupling to gravity. The attractor is located in the ‘sweet spot’ of Planck’s recent
results.

Introduction. The data releases by WMAP9 and
Planck2013 [1] attracted attention of cosmologists to
two very di↵erent cosmological models which, surpris-
ingly, made very similar observational predictions: the
Starobinsky model R + R2 [2] and the chaotic inflation
model V (�) ⇠ �4 [3] with non-minimal coupling to grav-
ity ⇠

2�2R [4, 5]. For ⇠ & 0.1, both of these models predict
that for large number of e-foldings N , the spectral index
and tensor-to-scalar ratio are given by

ns = 1 � 2/N , r = 12/N2 . (1)

For N ⇠ 60, these predictions ns ⇠ 0.967, r ⇠ 0.003
(ns ⇠ 0.964, r ⇠ 0.004 for N ⇠ 55) are in the sweet spot
of the WMAP9 and Planck2013 data.

Further investigations revealed that many other infla-
tionary theories also predict ns and r given by (1). In
particular, (1) is a universal attractor point for a broad
class of theories with spontaneously broken conformal
or superconformal invariance [6], and for closely related
models with negative non-minimal coupling ⇠ < 0 [7].

However, until now, in the theories with non-minimal
coupling ⇠

2�2R with ⇠ > 0, this generality did not extend
beyond the models with the potentials ⇠ �4 studied in
[4, 5]. In this paper, we propose a very simple generaliza-
tion of this class of models, which applies to practically
every inflationary potential V (�). This can be achieved
by introducing a generalized version of non-minimal cou-
pling to gravity, such as ⇠

p
V (�)R, or even a much sim-

pler one, ⇠�R. We will show that all of these models
have the universal set of predictions (1) in the strong
coupling limit ⇠ ! 1. We will also show how exactly
the predictions of the theories with di↵erent potentials
V (�) depend on ⇠ and approach the universal attractor
point (1) with the growth of ⇠.

Non-minimal coupling. The starting point of many
inflationary models is a Lagrangian consisting of the
Einstein-Hilbert term for gravity plus a kinetic term and
scalar potential for the inflaton field. The Lagrangian in-
cluding the generalized non-minimal coupling to gravity
reads

LJ =
p

�g[ 12⌦(�)R � 1
2 (@�)2 � VJ(�)] , (2)

with1

⌦(�) = 1 + ⇠f(�) , VJ(�) = �2f2(�) . (3)

Our notation for VJ(�) does not imply any constraint
on the scalar potential other than being positive, and is
motivated by the superconformal version of the model
that will be introduced later. Due to the non-minimal
coupling, we will refer to this form of the theory as Jordan
frame. In order to transform to the canonical Einstein
frame, one needs to redefine the metric:

gµ⌫ ! ⌦(�)�1gµ⌫ . (4)

This bring the Lagrangian to the Einstein-frame form:

LE =
p

�g[ 12R � 1
2

⇣
⌦(�)�1 + 3

2 (log⌦(�))
02
⌘
(@�)2+

� VE(�)] , with VE(�) =
VJ(�)

⌦(�)2
. (5)

Note that in the absence of non-minimal coupling, ⇠ = 0,
the distinction between Einstein and Jordan frame van-
ishes. In this case the inflationary dynamics is fully deter-
mined by the properties of the scalar potential VJ(�) =
VE(�). In the presence of a non-minimal coupling, how-
ever, one has to analyze the interplay between the dif-
ferent contributions to the inflationary dynamics due to
VJ(�) and ⇠.

Behavior at weak coupling. We first analyze the
e↵ect of the non-minimal coupling for small ⇠. At linear
order, the kinetic terms in (5) give rise to the following
definition of the canonical scalar field ':

@'

@�
= 1 � ⇠

2f(�) , (6)

where we are suppressing higher-order terms. A similar
approximation can be made to the Einstein-frame poten-
tial,

VE = �2f(�)2(1 � 2⇠f(�)) . (7)

1
Various aspects of generalized non-minimal coupling were studied

in [8–12].
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L =
p
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This  theory is locally conformal invariant

g̃µ⌫ = e�2�(x)gµ⌫ , �̃ = e�(x)�
The field (x) is referred to as a conformal compensator, which we will call 
`conformon.'   It has negative sign kinetic term, but this is not a problem 
because it can be removed from the theory by fixing the gauge symmetry, for 
example, using the gauge

� =
p
6

This gauge fixing can be interpreted as a spontaneous breaking 
of conformal invariance by the classical field 

The action in this gauge:
dS or AdS

�

� =
p
6

L =
p
�g


R(g)

2
� 9�

�

Kallosh, AL 2013 



The simplest conformally invariant two-field model of dS or AdS space and 
the SO(1,1) invariant conformal gauge

Local conformal symmetry

The global SO(1,1) transformation is a boost between these two fields.

SO(1,1) invariant conformal gauge

This gauge condition represents a hyperbola which can be parameterized by 
a canonically normalized field

The action in this gauge,
dS/AdS

'
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Here F is an arbitrary function. When this function is present, it breaks the 
SO(1,1) symmetry of the de Sitter model. This is the only possibility to 
keep local conformal symmetry and to deform the SO(1,1) symmetry.

In the gauge                            , the theory becomes

The attractor behavior near a critical point where SO(1,1) symmetry is 
restored is the following: start with generic F(tanh),  always get

ns ⇡ 0.967 r ⇡ 0.0032
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Jordan frame derivation of the same result:  use the gauge � =
p
6

Einstein frame potential 

V =

Einstein frame kinetic term �1

2

@µ�@µ�
⇣
1� �2

6

⌘2

V (�) = F (�/
p
6)

Find canonical inflaton
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Inflation	in the	landscape	is	facilitated	by	inflation	of the	landscape

Potential	in	the	original	
variables	of	the	conformal	
theory

Potential	in	the	Einstein	frame
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Start with the simplest chaotic inflation model

Modify its kinetic term

Switch to canonical variables � =
p
6↵ tanh

'p
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The potential becomes

V = 3↵m2 tanh2
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Ferrara, Kallosh, AL, Porrati, 2013; 
Kallosh, AL, Roest 2013;  Galante, Kallosh, AL, Roest 2014

Simplest
T-model



General chaotic inflation model

Modify its kinetic term

Switch to canonical variables � =
p
6↵ tanh

'p
6↵

The potential becomes
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This is a plateau potential for any nonsingular V (�)

T-models



Suppose	inflation	takes	place	near	the	pole	at	t	=	0,	and	
V(0)	>	0,		V’(0)	>0,	and		V has	a	minimum	nearby.	Then	
in	canonical	variables			

Then	in	the	leading	approximation	in	1/N,	for	any	non-singular	V

1
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4
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ns = 1� 2

N
, r = ↵

12

N2

Galante,	Kallosh,	AL,	Roest 1412.3797



THE BASIC RULE:

For	a	broad	class	of	cosmological	attractors,	the	spectral	index	ns
depends	mostly	on	the	order	of	the	pole in	the	kinetic	term,	while	
the	tensor-to-scalar	ratio	r depends	on	the	residue.	Choice	of	the	
potential	almost	does	not	matter,	as	long	as	it	is	non-singular	at	
the	pole	of	the	kinetic	term.	Geometry	of	the	moduli	space,	not	the	
potential,	determines	much	of	the	answer.

Galante,	Kallosh,	AL,	Roest		1412.3797

An	often	discussed	concern	about	higher	order	corrections	to	the	
potential	for	large	field	inflation	does	not	apply	to	these	models.



Potential	in	canonical	variables	has	a	plateau	at	large	values	of	the	inflaton	field,	
and	it	is	quadratic	with	respect	to	s. 
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Couplings	of	the	canonically	normalized	fields	are	determined	by	
derivatives	such	as	
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As long as V (�,�) and its derivatives are non-singular at
the boundary � =
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4. HYPERBOLIC GEOMETRY AND PLATEAU
POTENTIALS OF THE INFLATON FIELD

We are turning now to supergravity versions of ↵-
attractors. There were many attempts to build successful
inflationary models in supergravity. It was a rather di�cult
task mostly because of the presence of the term eK in the ex-
pression for the F-term potential. For the simplest choice of
the Kähler potential K = ��, the inflaton potential at large
� was too steep, growing as e��. One could compensate for
this growth by a smart choice of a superpotential. This is
what was achieved in the first model of chaotic inflation in
supergravity, which has a plateau potential (1.1) [2]. How-
ever, the real breakthrough happened almost two decades
later, with the systematic use of the Kähler potentials with
a flat direction corresponding to the inflaton field [15, 16].
Even the unexpected early success in building an inflation-
ary model with a plateau potential [2] was fully understood
only much later, when it was realized that this model can
be formulated as a model with a Kähler potential with a flat
direction [14, 33].

The simplest example of such Kähler potentials is given
by K = (� � �)2/2 + SS, where � = (' + i#)/

p
2. Here '

is a canonical inflaton field. By taking a superpotential

W = Sf(�) (4.1)

one finds a general family of the inflaton potentials [16]

V = |f2('/
p
2)| . (4.2)

Dangerous terms like e�� do not appear in the inflaton di-
rection because K = 0 for � = �.

This class of theories is very general; it can easily in-
corporate the models with the potential exactly coinciding
with the Starobinsky-Whitt potential (1.2), as well as the T-
models with the potential (2.2). However, in this approach
the kinetic term of the inflaton field is canonical from the
very beginning, and potentials V with an infinite plateau
require extreme fine-tuning of the function f(�).

The Kähler potentials which are motivated by string the-
ory and extended supergravity with N � 2 supersymme-
try have a logarithmic dependence on moduli and an associ-
ated SL(2,R) symmetry, Poincaré disk geometry. Quantum

corrections might break this symmetry to a discreet one,
SL(2,Z). However, the Kähler potential still requires a log-
arithmic dependence on moduli which is protected by this
modular invariance. Such a logarithmic dependence always
leads to poles in the kinetic terms for scalars. For example
with log(T + T ) we find the kinetic term @T@T̄

(T+T̄ )2
, and for

log(1� ZZ̄) we find @Z@Z̄

(1�ZZ̄)2
.

Therefore to recover the advantages of the theories with
the pole in the kinetic term, one may start with the theories
with logarithmic Kähler potentials, such as �3 log(T +T ) in
half-plane variables T [18, 19, 26, 28] or �3 log(1 � ZZ) in
disk variables [25]. For example, the theory with the super-
potential W = Sf(T ) (4.1) with f(T ) = 3M(T � 1) and the
Kähler potential

K = �3 log
⇥
T + T � SS + c(SS)2

⇤
(4.3)

exactly reproduces the Starobinsky-Whitt plateau potential
with V0 = 3M2/4 [18, 19], for T = (' + i#)/

p
2. (The

term c(SS)2 was required for stabilization of the field S near
S = 0.)

A further progress in constructing ↵-attractors in super-
gravity was achieved very recently when the transition was
made from the Kähler potentials such as (4.3), to their equiv-
alent shift-symmetric counterparts, such as [29–31, 34, 35],

K = �3↵

2
log


(T + T )2

4TT

�
+ SS . (4.4)

The new Kähler potentials are related by a Kähler trans-
formation to the original ones. However, the new Kähler
potentials have a symmetry under the shift of the inflaton,
which corresponds to the real direction T + T , accompanied
by the rescaling of the inflaton partner T � T . During in-
flation, T = T and therefore K = 0, which is obviously
invariant under the inflaton shift [29, 30, 34]. One can also
formulate the required property of the Kähler potential as
[31]

@
T

K|
T=T

= 0 . (4.5)

The shift symmetry of the inflaton potential is only slightly
broken by the superpotential.

In this class of models, the pole of the kinetic term oc-
curs at T = 0. Any superpotential W = Sf(T ) with f(T )
non-singular at T = 0 leads to a non-singular potential
V (T ) = |f2(T )|. Just like in our single-field models con-
sidered in sections 2, 3, any real holomorphic function f(T )
with an absolute value growing towards T = 0 leads to a
plateau potential with respect to the canonically normalized

inflaton field ' such that T = e�
p

2/3'. It reproduces the
Starobinsky potential for f(T ) ⇠ 1�T . In this approach, the
flatness of the potential is not a↵ected by any non-singular
corrections �f(T ).

Similarly, instead of the Kähler potential �3↵ log(1 �
ZZ) + SS in disk variables [25] it is convenient to use an

As	a	result,	couplings	of	the	inflaton	field	to	all	other	fields	are	
exponentially	suppressed	during	inflation.	The	asymptotic	shape	
of	the	plateau	potential	of	the	inflaton	is	not affected	by	quantum	
corrections.

Kallosh,	AL,	1604.00444



Figure 2. The same potential in terms of the canonical inflaton field ' (2.2). As we see, the shape
of the potential at � ⌧ 1 practically did not change. Meanwhile the vicinity of the boundary of the
moduli space at |�| = 1 is infinitely stretched. The height of the potential V (') at ' ! ±1 coincides
with V (�) at the boundaries of the moduli space � = ±1.

single-field inflation model I do not make any attempts to address the cosmological constant
problem, I am just assuming that it is small in one of the string theory vacua. To reflect this
assumption, I appropriately uplifted the otherwise random potential. Fortunately, due to the
magic of ↵ attractors, this uplifting does not change the predictions for ns and r.

3 Two-field ↵-attractors

Now we will generalize these results for the theory of two field inflation, � and �, with the
Lagrangian
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In terms of canonical fields ' with the kinetic term (@µ')2

2 , the potential is
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,�). (3.2)

During inflation at |'| �
p
↵, one can use the asymptotic equation

V (',�)|'|�
p
6↵ ⇡ V (�,�)�=±

p
6↵ , (3.3)

which means that asymptotically V (',�) is given by the values of the original potential
V (�,�) at the boundaries of the moduli space. The same is true for the curvature of the
potential in the � direction, i.e. for the effective mass squared of the field �, which asymp-
totically approaches a constant value [23]

V�,�(',�)|'|�
p
6↵ ⇡ V�,�(�,�)�=±

p
6↵ . (3.4)

To illustrate the implications of this result, we will consider again the case 6↵ = 1 and
generate a random potential V (�,�) of the original fields � and � in the Planck size box
1 < �,� < 1, see Fig. 3. Just as in the single field case, the potential V (�,�) shown in
Fig. 3 is very steep, so it would not support slow roll inflation if both fields were canonically
normalized. (We could always generate a smooth potential with the super-Planckian field
variations, but we want to analyze the most difficult case when the potential V (�,�) is very
steep.)
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Can	we	have	
inflation	in	such	
potentials?
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Figure 2. The same potential in terms of the canonical inflaton field ' (2.2). As we see, the shape
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4. In particular, the tops of the three hills in the upper corner of Fig. 3 become converted
into three infinitely long ridges in Fig. 4, and the two minima separating them at � = 1 in
Fig. 3 become two infinitely long inflationary valleys. As we already mentioned, the mass
squared of the field � along these valleys asymptotically approaches a constant value, which
can be calculated directly at � ! 1 [23]. Thus if the valley begins at a point corresponding
to a minimum of V (�,�) with respect to � at the boundary � = ±1, then it describes an
infinitely long inflationary valley, which remains stable until the field ' becomes sufficiently
small.

There are several things that could go wrong about these models. First of all, any of
these flat directions can be an AdS valley with a negative value of the potential. Moreover,
an inflationary valley may eventually brings the fields towards an AdS vacuum state with a
negative vacuum energy, or to a dS vacuum state with a very large positive vacuum energy.
However, one can adjust the value of the cosmological constant in the context of the string
theory landscape, as discussed in the previous section; see also a discussion below. The second
issue is apparent from Figs. 1 and 2: The potential V (',�) is inflationary and does not push
the field infinitely far away if V (�,�) grows towards the boundary at � = ±1. This should
happen in 50% of all cases in the random landscape, so this is not a real issue.

Once can also make an additional generalization and modify the kinetic term of the
second field as well:
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Then one can make a field redefinition and instead of the fields � and � consider the potential
in terms of the canonically normalized fields ' and � with kinetic terms (@µ')2

2 , and (@µ�)2

2 .
The potential in terms of the canonical variables ' and � becomes

V (',�) = V (
p
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). (3.6)

As a result, the random potential shown in Fig. 3 acquires additional set of flat directions
shown in Fig. 5.

Note that now we have two sets of inflationary attractors. If inflation occurs when the
field ' rolls along the inflationary valleys in the ' direction, the predictions of the theory for
↵ . O(1) are

1� ns ⇡
2

N
, r ⇡ 12↵

N2
. (3.7)

However, if inflation occurs when the field � rolls along the inflationary valleys in the �
direction, the predictions of the theory for � . O(1) are
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. (3.8)

– 6 –

4. In particular, the tops of the three hills in the upper corner of Fig. 3 become converted
into three infinitely long ridges in Fig. 4, and the two minima separating them at � = 1 in
Fig. 3 become two infinitely long inflationary valleys. As we already mentioned, the mass
squared of the field � along these valleys asymptotically approaches a constant value, which
can be calculated directly at � ! 1 [23]. Thus if the valley begins at a point corresponding
to a minimum of V (�,�) with respect to � at the boundary � = ±1, then it describes an
infinitely long inflationary valley, which remains stable until the field ' becomes sufficiently
small.

There are several things that could go wrong about these models. First of all, any of
these flat directions can be an AdS valley with a negative value of the potential. Moreover,
an inflationary valley may eventually brings the fields towards an AdS vacuum state with a
negative vacuum energy, or to a dS vacuum state with a very large positive vacuum energy.
However, one can adjust the value of the cosmological constant in the context of the string
theory landscape, as discussed in the previous section; see also a discussion below. The second
issue is apparent from Figs. 1 and 2: The potential V (',�) is inflationary and does not push
the field infinitely far away if V (�,�) grows towards the boundary at � = ±1. This should
happen in 50% of all cases in the random landscape, so this is not a real issue.

Once can also make an additional generalization and modify the kinetic term of the
second field as well:

1p
�g

L =
R

2
� (@µ�)2

2(1� �2

6↵)
2
� (@µ�)2

2(1� �2

6� )
2
� V (�,�). (3.5)

Then one can make a field redefinition and instead of the fields � and � consider the potential
in terms of the canonically normalized fields ' and � with kinetic terms (@µ')2

2 , and (@µ�)2

2 .
The potential in terms of the canonical variables ' and � becomes

V (',�) = V (
p
6↵ tanh

'p
6↵

,
p

6� tanh
�p
6�

). (3.6)

As a result, the random potential shown in Fig. 3 acquires additional set of flat directions
shown in Fig. 5.

Note that now we have two sets of inflationary attractors. If inflation occurs when the
field ' rolls along the inflationary valleys in the ' direction, the predictions of the theory for
↵ . O(1) are

1� ns ⇡
2

N
, r ⇡ 12↵

N2
. (3.7)

However, if inflation occurs when the field � rolls along the inflationary valleys in the �
direction, the predictions of the theory for � . O(1) are

1� ns ⇡
2

N
, r ⇡ 12�

N2
. (3.8)

– 6 –

In	terms	of	canonical	fields
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Two	families	of	attractors,	related	
to	the	valleys	along	the	two	
different	inflaton directions:

or



At	large	fields,	the	a-attractor potential	remains	10	orders	of	
magnitude	below	Planck	density.	Can	we	have	inflation	with	
natural	initial	conditions	here?	The	same	question	applies	for	
the	Starobinsky model	and	Higgs	inflation.
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To	explain	the	main	idea,	note	that	this	potential	coincides	with	
the	cosmological	constant	almost	everywhere.
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Start	at	the	Planck	density,	in	an	expanding	universe	dominated	by	
inhomogeneities.	The	energy	density	of	matter	is	diluted	by	the	
cosmological	expansion	as	1/t2.			What	could	prevent	the	
exponential	expansion	of	the	universe	which	becomes	dominated	
by	the	cosmological	constant	L after	the	time	t	=	L-1/2 ?

Inflation	does	NOT	happen	in	the	universe	with	the	cosmological	
constant	L =10-10 only	if	the	whole	universe	collapses	within	10-28	
seconds	after	its	birth.

In	other	words,	only	instant	global	collapse	could	allow	
the	universe	to	avoid	exponential	expansion	dominated	
by	the	cosmological	constant.	If	the	universe	does	not	
instantly	collapse,	it	inflates.

For	the	universe	with	a	cosmological	constant,	the	
problem	of	initial	conditions	is	nearly	trivial.		



This	optimistic	conclusion	related	to	the	cosmological	
constant	applies	to	a-attractors	as	well,	because	their	
potential	coincides	with	the	cosmological	constant	
almost	everywhere.
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These	arguments	are	valid	for	general	large	field	inflationary	
models	as	well.	Recently	they	have	been	confirmed	by	the	same	
methods	of	numerical	GR	as	the	ones	used	in	simulations	of	BH	
evolution	and	merger.	The	simulations	show	how	BHs	are	
produced	from	large	super-horizon	initial	inhomogeneities,	
while	the	rest	of	the	universe	enters	the	stage	of	inflation.

East,	Kleban,	AL,	Senatore 1511.05143

These	results	obtained	by	sophisticated	calculations	have	a	
very	simple	interpretation	in	terms	of	inflation	in	economy.



It	is	well	known	that	dropping	money	from	a	helicopter	may	
lead	to	inflation,	unless	all	money	miss	the	target



A	simple	interpretation	of	our	results
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Money	dropped	from	a	helicopter	
have	no	choice	but	lend	on	an	
infinitely	long	plateau.	This	
inevitably	leads	to	inflation

suggested	by	Starobinsky



Potential	in	canonical	variables	has	a	plateau	at	large	values	of	the	inflaton	field,	
and	it	is	quadratic	with	respect	to	s. 
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Chaotic	inflation	with	a	parabolic	potential	goes	first,	starting	at	
nearly	Planckian density.	When	the	field	down,	the	plateau	
inflation	begins.

No	problem	with	initial	conditions



Cosmological	attractors	allow	to	reconsider	many	
usual	assumptions	with	respect	to	the	large	field	
models,	resolving	some	of	their	often	discussed	
problems,	offering	new	solutions	to	the	problem	
of	initial	conditions	in	inflationary	cosmology.	

Using	the	latest	developments	in	supergravity	and	
string	theory	to	be	described	in	the	lecture	by	
Renata	Kallosh,	one	can	develop	inflationary	
models	describing	not	only	inflation	but	also	dark	
energy	and	supersymmetry	breaking.


