Lecture lll, part 1

Large field inflation and

cosmological attractors
(basic models)



m2¢2
Simplest inflationary model: V' = 5

Inflation can start at the Planck density if there is a single Planck
size domain with a potential energy V of the same order as kinetic
and gradient density. This is the minimal requirement, compared
to standard Big Bang, where initial homogeneity is requires across

10°° Planck size domains.

1.2




Polynomial inflation:

Simplest quadratic model predicts too large amount of the gravitational waves. However,
it can be trivially generalized to avoid this problem, while still offering the possibility of
inflation beginning at the Planck density

m2¢2
V = : (1 — ap + b¢2) Destri, de Vega, Sanchez, 2007
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One can fit all Planck data by a polynomial,
with inflation starting at the Planck density

B m2¢2

v
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(1 —ag + bp°)
.

3 observables: A, n,, r

3 parameters: m, a, b

Example: m =10, a =0.12,
b=0.29

N

Destri, de Vega, Sanchez, 2007
Nakayama, Takahashi and Yanagida, 2013
Kallosh, AL, Westphal 2014

Kallosh, AL, Roest, Yamada 1705.09247
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But the best fit is provided by models with plateau potentials



The most natural fit is provided by
models with plateau potentials
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First models of cosmological attractors
and their subsequent generalizations



Tensor-to-Scalar Ratio (rp002)
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We constructed superconformal version
June 2013 of the theory with arbitrary
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Minimal coupling to gravity f = () r=0.3, too big
Conformal coupling to gravity g R — no inflation
(conformal invariance is broken by 6

the Einstein term R)

Agreement with data for a quartic potential for 5 Z 0.002
When f — (). 1 the asymptotic values of n, and r are reached

Standard model Higgs inflation requires 5 ~ 1()4
and gives practically the same n_and r



s it possible to have local conformal symmetry (Weyl symmetry) for

1
£ —2

This is against the intuition of General Relativity, but totally natural
in superconformal framework

In General Relativity even with many scalars which live in a real
moduli space one would still expect Weyl symmetry only if

1 Note, that for the
— — — superconformal
6 symmetry it is necessary

The reason why it is possible to have an effective ™ have Kahler geometry

arbitrary f has to do with the feature of the One could have used

scalar moduli space called Kahler geometry SEMEr FROTIEng [
bosonic models, but in

supersymmetric ones it

1306.3211
was natural



The way to study it is to start with a conformally invariant theory
of 2 complex fields, one of which (conformon) can be removed
by a gauge transformation. (More about it later.)

The final result is that the following theory describing two real
scalars is (nearly) conformally invariant. (As before, the
invariance is broken only by the first (Einstein) term.)

1 1
TMER—1 (6_A> piR—1% <6+A) 3 R—10M 01 001 — 2002 Dpa— 3 (01+93)°

It would be very difficult to guess this form or derive this result

without using Kahler geometry (or using supergravity and then
ignoring fermions).



Tensor-to-Scalar Ratio (rg.002)

“Combing” Chaotic Inflation: non- )’
minimal coupling to gravity
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N ~ 50-60: number of e-foldings of inflation

Ly =v—g[52¢)R —

Qo) =1+E6f(9),

Approaching the attractor

in the leading approximation in N

1—n,=2/N, r=12/N?
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Vi(p) = )\2f2(¢) Vicinity of the attractor point



De Sitter from spontaneously broken conformal symmetry
Kallosh, AL 2013

1 X A
L=+=g|z0,x0xg" +=R(g) — =x"
2 12 4
This theory is locally conformal invariant
~ _ —20(x ~ o(x
G =e 27g,, . x=e"My

The field X (x) is referred to as a conformal compensator, which we will call

‘conformon.' It has negative sign kinetic term, but this is not a problem
because it can be removed from the theory by fixing the gauge symmetry, for

example, using the gauge
x = V6

This gauge fixing can be interpreted as a spontaneous breaking
of conformal invariance by the classical field x = V6

The action in this gauge: . R(g)
dS or AdS L= °_g{ y




The simplest conformally invariant two-field model of dS or AdS space and
the SO(1,1) invariant conformal gauge

_ 2 2 2 2\2
£ = Y9 [ (9xdx — 8,60"6) + XL R(g) - A& =D

2 0 4
Local conformal symmetry
g,uu — e—2a(x)g/u/ : )2 — ea(X)Xa ¢ — eO(X)§b

The global SO(1,1) transformation is a boost between these two fields.

SO(1,1) invariant conformal gauge X2 — q32 =0

This gauge condition represents a hyperbola which can be parameterized by
a canonically normalized field ©

X:\@COShi qb:\TGSinhi

V6 V6
The action in this gauge, B 1 1
dS/AdS L=+v=g|5R—50upd"p —9A



Chaotic inflation from conformal theory: T-Model

X* — ¢*
6

(" = x*)°

£ = Y22 (0ux0"x — 0,60"9) + 18

5 (¢/x)

R(g) —

Here F is an arbitrary function. When this function is present, it breaks the
SO(1,1) symmetry of the de Sitter model. This is the only possibility to
keep local conformal symmetry and to deform the SO(1,1) symmetry.

In the gauge X2 — ¢2 — 0, the theory becomes

1 1
L=+/—g §R - 55’M<,0(3’“g0 — F(tanh o)

The attractor behavior near a critical point where SO(1,1) symmetry is
restored is the following: start with generic F(tanh), always get

ns ~ 0.967 r ~ (0.0032



Jordan frame derivation of the same result: use the gauge Y = \/6
R(gs) o7\ 1 ¢ ’
l —— ) — =0,00"p — F ( ) — —1
; ( ; 5 0" b ¢/ V6 ;

Einstein frame kinetic term —3

£total =V 47

Einstein frame potential

V(¢) = F(¢/V6)

| . dy 1
Find canonical inflaton — =

dp 1 — ¢2/6

— £
V = F(tanh \/6)




Stretching and flattening of the potential is similar to
stretching of inhomogeneities during inflation

Potential in the original
variables of the conformal

theory

Potential in the Einstein frame

Inflation in the landscape is facilitated by inflation of the landscape



Plateau potentials a-attractors
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Simplest T-model in canonical variables ~ Simplest E-model
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In geometric variables



What is the meaning of o-attractors?

Ferrara, Kallosh, AL, Porrati, 2013;
Kallosh, AL, Roest 2013; Galante, Kallosh, AL, Roest 2014

Start with the simplest chaotic inflation model

mﬁ = 2R 28gb 5 o)
Modify its kinetic term

1 1 2
——L=-R- 99

1
V=9 2 2(1- )2

L 2.9
— —m

5™ P
Switch to canonical variables ¢ = V6« tanh —ﬁa

The potential becomes

V = 3am? tanh” L4

Simplest
\/ 604 T-model




General chaotic inflation model

Loty 1y
ﬁﬁ_QR zagb V(o)
Modify its kinetic term
1 1 1 O0¢?
R

2

. . . 2
Switch to canonical variables — V6o tanh ——
¢ \VA 10"

The potential becomes

V = V(taﬂh \/%) T-models

This is a plateau potential for any nonsingular V' ()



The essence of c-attractors

Galante, Kallosh, AL, Roest 1412.3797

() e

Suppose inflation takes place near the pole att = 0, and

V(0) >0, V’(0) >0, and V has a minimum nearby. Then
in canonical variables

1 1 3
“R— ~(8p)? — Vo(1 — e Viaa? 1 )
2 2
Then in the leading approximation in 1/N, for any non-singular V
2 12
ne—=1—— r—=o——

N’ N?2



The essence of c-attractors

Galante, Kallosh, AL, Roest 1412.3797

ThE BASIC RUILES

For a broad class of cosmological attractors, the spectral index ng
depends mostly on the order of the pole in the kinetic term, while

the tensor-to-scalar ratio r depends on the residue. Choice of the
potential almost does not matter, as long as it is non-singular at
the pole of the kinetic term. Geometry of the moduli space, not the
potential, determines much of the answer.

An often discussed concern about higher order corrections to the
potential for large field inflation does not apply to these models.



What happens if we add other fields?

1 _1 1(8¢)2 I 5o 1 o 1.9 9222

Potential in canonical variables has a plateau at large values of the inflaton field,
and it is quadratic with respect to c.




Asymptotic freedom of the inflaton

Kallosh, AL, 1604.00444

1 1 1 (0¢)? 1 )
ﬁ£—§R_§( _2_2)2 5(80) —V(qb,(f)

Couplings of the canonically normalized fields are determined by
derivatives such as

2 ;
Apoo = 0,02V (¢,0) =24/ — e V3a?® 9,02V (6, 0)

As a result, couplings of the inflaton field to all other fields are
exponentially suppressed during inflation. The asymptotic shape

of the plateau potential of the inflaton is not affected by quantum
corrections.



Inflation in Random Potentials and
Cosmological Attractors

AL 1612.04505
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Can we have
inflation in such
potentials?

M




(Ou 90)2

5, the potential is

In terms of canonical fields ¢ with the kinetic term

V(p,0) =V (V6a tanh \/%, o)

Many inflationary
valleys representing
alpha-attractors




Double Attractors

1 R (0,0)? (0,0)?
I o R — e —V(¢,0o
/_g 2 2( _ éb_a)2 2(1 _ g_ﬁ)g (¢ )
In terms of canonical fields  V(p, x) = V(vV6« tanh \/%, \/ 65 tanh —\/>€<i_6)

Two families of attractors, related
to the valleys along the two
different inflaton directions:

1—77,3%




O-attractors: Initial conditions for inflation

At large fields, the a-attractor potential remains 10 orders of
magnitude below Planck density. Can we have inflation with
natural initial conditions here? The same question applies for
the Starobinsky model and Higgs inflation.
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To explain the main idea, note that this potential coincides with
the cosmological constant almost everywhere.




For the universe with a cosmological constant, the
problem of initial conditions is nearly trivial.

Start at the Planck density, in an expanding universe dominated by
inhomogeneities. The energy density of matter is diluted by the
cosmological expansion as 1/t>. What could prevent the
exponential expansion of the universe which becomes dominated
by the cosmological constant A after the timet= A"12?

Inflation does NOT happen in the universe with the cosmological
constant A =10710 only if the whole universe collapses within 1028
seconds after its birth.

In other words, only instant global collapse could allow
the universe to avoid exponential expansion dominated
by the cosmological constant. If the universe does not
instantly collapse, it inflates.



This optimistic conclusion related to the cosmological
constant applies to a-attractors as well, because their
potential coincides with the cosmological constant
almost everywhere.




These arguments are valid for general large field inflationary
models as well. Recently they have been confirmed by the same
methods of numerical GR as the ones used in simulations of BH
evolution and merger. The simulations show how BHs are
produced from large super-horizon initial inhomogeneities,
while the rest of the universe enters the stage of inflation.

East, Kleban, AL, Senatore 1511.05143

These results obtained by sophisticated calculations have a
very simple interpretation in terms of inflation in economy.



It is well known that dropping money from a helicopter may
lead to inflation, unless all money miss the target




A simple interpretation of our results
suggested by Starobinsky

Money dropped from a helicopter
have no choice but lend on an
infinitely long plateau. This
inevitably leads to inflation




Adding other fields simplifies it even further

1 1 1 (8gb)2 1 1 1 g2
——L=-R— - — —m2¢? — Z(00)? — ZM?*0? — L %52
V=9 2 2(1— &2 ¢ (99) 2 2

(8
Potential in canonical variables has a plateau at large values of the inflaton field,
and it is quadratic with respect to c. 20




Initial conditions for plateau inflation

O- o -1.0
Chaotic inflation with a parabolic potential goes first, starting at
nearly Planckian density. When the field down, the plateau
inflation begins.

No problem with initial conditions



Conclusions:

Cosmological attractors allow to reconsider many
usual assumptions with respect to the large field
models, resolving some of their often discussed
problems, offering new solutions to the problem
of initial conditions in inflationary cosmology.

Using the latest developments in supergravity and
string theory to be described in the lecture by
Renata Kallosh, one can develop inflationary
models describing not only inflation but also dark
energy and supersymmetry breaking.



