
The	colloquium	From Planck to Escher on	June	
14	was	an	introduction	to	the	issues	to	be	
discussed	in	the	series	of	lectures:

Thursday	June	15	@	13:45:	
Andrei	Linde	“Inflationary	cosmology”

Thursday	June	22	@	13.45:
Renata	Kallosh,	“De	Sitter	vacua in	string	theory	and	
supergravity”

Monday	June	26	@	13:45:	
Renata	Kallosh and	Andrei	Linde,	“Alpha-attractor	models	
and	B-mode	targets”



1.	Following	an	introduction	to	inflationary	cosmology,	I	will	describe	a	recently	
developed	class	of	inflationary	models,	motivated	by	maximal	supersymmetry	and	
string	theory,	that	gives	specific	targets	for	future	B-mode	experiments.	These	
models	are	based	on	the	hyperbolic	geometry	of	the	Poincare	disk,	which	is	
beautifully	represented	by	Escher's	picture	Circle	Limit	IV.

Lecture	II:	Escher’s	part

2.	De	Sitter	vacua in	string	theory	and	supergravity	



N :		the	number	of	e-folds	N	left	to	the	end	of	inflation, defined	as	

Glossary

where	a is	the	scale	factor	and	af is	its	value	at	the	end	of	inflation.	The	spectrum	of	
fluctuations	observed	in	CMB	corresponds	to		

47	<	N		<	57

N :		is	the	number	of	supersymmetries,		Majorana spinors.	The	maximal	number	for	
theories	with	highest	spin	2	is

N =	8
The	minimal	number	which	we	will	consider	here	is	

N =	1

ns : Tilt	of	the	spectrum	of	inflationary	perturbations

ns ⇡ 0.965

r :	 Level	of	B-modes,	r=T/S.		Not	detected

r < 0.07

a = af e
�N

Primordial	gravitational	
Waves,	B-modes.	Created	
during	early	universe	inflation,
about	13.8	billion	years	ago.
Not	yet	detected.

Gravitational	waves	detected	by	LIGO	from	the	binary	black	hole	merger	at	about
1.3	billion	years	ago

e55 ⇡ 1023



a

ns = 1� 2

N
, r = ↵

12

N2

CMB-S4
About	future
B-mode		detection

Gray	band	shows	the	
prediction	of	a	sub-
class	of	a-attractors



October	2016
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Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors

Figure 2. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors. Figure from Snowmass CF5 Neutrino planning
document.

1.2.1 Raw sensitivity considerations and detector count

The sensitivity of CMB measurements has increased enormously since Penzias and Wilson’s discovery in
1965, following a Moore’s Law like scaling, doubling every roughly 2.3 years. Fig. 2 shows the sensitivity of
recent experiments, expectations for upcoming Stage-3 experiments, characterized by order 10,000 detectors
on the sky, and the projection for a Stage 4 experiment with order 100,000 detectors. To obtain many of the
CMB-S4 science goals requires of order 1 µK arcminute sensitivity over roughly half of the sky, which for a
four-year survey requires of order 500,000 CMB-sensitive detectors.

To maintain the Moore’s Law-like scaling requires a major leap forward, a phase change in the mode of
operation of the ground based CMB program. Two constraints drive the change: 1) CMB detectors are
background-limited, so more pixels are needed on the sky to increase sensitivity; and 2) the pixel count for
existing CMB telescopes are nearing saturation. Even using multichroic pixels and wide field of view optics,
these CMB telescopes are expected to field only tens of thousands of polarization detectors, far fewer than
needed to meet the CMB-S4 science goals.

CMB-S4 thus requires multiple telescopes, each with a maximally outfitted focal plane of pixels utilizing
superconducting, background limited, CMB detectors. To achieve the large sky coverage and to take
advantage of the best atmospheric conditions, the South Pole and the Chilean Atacama sites are baselined,
with the possibility of adding a new northern site to increase sky coverage to the entire sky not contaminated
by prohibitively strong Galactic emission.

CMB-S4 Science Book

T

T

E

Figure 1: This Figure is taken from [16], it represents a forecast of CMB-S4 constraints in the ns � r plane
for a fiducial model with r = 0.01. Here the grey band shows predictions of the sub-class of ↵-attractor models
[2, 3, 4]. We have added to this figure a blue circle with the letter T inside it corresponding to a highest
preferred value 3↵ = 7 and the purple one corresponding to the lowest preferred value 3↵ = 1 in a seven-disk
geometry. All intermediate cases 3↵ = {1, 2, 3, 4, 5, 6, 7} are between these two. They all describe the class
of ↵-attractor models with V ⇠ tanh2('/

p
6↵), so-called quadratic T -models. The quadratic E-models with

V ⇠ (1 � e
p

2/3↵')2 tend to be slightly to the right of the T -models, see [2]. We show them as a navy circle
with the letter E inside it.

by requiring that

3↵ = 7 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 ⌘ ⌧
3↵ = 6 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 ⌘ ⌧ , ⌧7 = const
3↵ = 5 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 ⌘ ⌧ , ⌧6 = ⌧7 = const
3↵ = 4 : ⌧1 = ⌧2 = ⌧3 = ⌧4 ⌘ ⌧ , ⌧5 = ⌧6 = ⌧7 = const
3↵ = 3 : ⌧1 = ⌧2 = ⌧3 ⌘ ⌧ , ⌧4 = ⌧5 = ⌧6 = ⌧7 = const
3↵ = 2 : ⌧1 = ⌧2 ⌘ ⌧ , ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 = const
3↵ = 1 : ⌧1 ⌘ ⌧ , ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 = const (4.17)

We illustrate in Fig. 1 the features of ↵-attractor models [2, 3, 4] with the seven-disk geometry
using the recent discussion of B-modes in the CMB-S4 Science Book [16]. We show in Fig. 1
predictions of ↵-attractor models with seven-disk geometry in the ns � r plane for N ⇠ 55, for
the minimal value 3↵ = 1 and for the maximal value 3↵ = 7.

5 Values of 3↵ in string theory

Here we will show how to derive the 7-disk geometry (4.13) in string theory. We start with
the derivation of non-compact symmetries in string theory following [17], [18]. The toroidal

7

a-attractor models

Future	B-mode	
satellite	missions

Well	motivated	new	models	originating	in	string	
theory,	M-theory,	maximal	supergravity

Ferrara,	RK,	2016,
RK,	Linde,	Wrase,	Yamada,	2017
RK,	Linde,	Roest,	Yamada,	2017

Ground	based	
experiments



Why	do	we	find	it	useful	to	talk	about	the	
size	of	the	Escher’s		disks	in	discussions	of	
the	CMB	future	B-mode	targets	?



Maurits Cornelis Escher, 1898-1972, 

Dutch Graphic Artist

Self Portrait

1929

Lithograph

Self Portrait

1929

Lithograph

Turning Point #1: Architecture to Art
1919, age 21
Haarlem School for Architecture and Decorative Arts 

“Wouldn’t you be a 
graphic artist 
instead of an 

architect?” 

de Mesquita, 
self portrait

1936: visits Alhambra in Granada, Spain

Islamic tiling captivates him

1922,



This is the richest source of inspiration that I have 
ever struck…

The Moors were past master of this. They decorated 
the walls and floors, particularly in the Alhambra in 
Spain, by placing congruent, multicolured pieces of 
majolica together without leaving any spaces 
between.”.  

Turning Point #2: Landscapes to Mindscapes
The	Moors	were	past	master	of	this.	They	decorated	the	
walls	and	floors,	particularly	in	the	Alhambra	in	Spain,	
by	placing	congruent,	multicolured pieces	of	majolica	
together	without	leaving	any	spaces	between.	

Islamic tiling 



Low symmetry Intermediate 
symmetry

High symmetry

Can we make this idea more rigourous?

This is the richest source of inspiration that I have 
ever struck…

The Moors were past master of this. They decorated 
the walls and floors, particularly in the Alhambra in 
Spain, by placing congruent, multicolured pieces of 
majolica together without leaving any spaces 
between.”.  

Turning Point #2: Landscapes to Mindscapes

Escher	after	Alhambra

Euclidean	geometry

A tessellation of	a	flat	surface	is	the	tiling	of	a plane using	one	or	more
geometric	shapes,	called	tiles,	with	no	overlaps	and	no	gaps.

Escher	struggled	to	capture	infinity

1952



It was after the 1936 Alhambra visit that his obsession with plane-
filling designs really took hold, and he began to produce designs like 

Angels and Devils 

For Angels and Devils Escher worked in 
ink rather than wood-cut. It has two ‘tiles’ 
that meet exactly and form a repeating 
design that could be extended indefinitely. 

Such drawings hint at infinity, in that the 
patterns could in principle be extended and 
repeated forever, but no finite diagram can 
actually show the whole tiling. 

Escher found this frustrating, and wanted a 
better solution to represent infinity. 



Coxeter and	Escher

In	1954 the	International	Congress	of	Mathematicians	was	located	in	
Amsterdam.	To	coincide	with	the	Congress,	a	major	exhibition	of	Escher’s	
work	was	held	at	the	Stedelijk Museum	in	Amsterdam	

In	this	way	the	well	known	geometer	H.	S.	M.	Coxeter first	became	
acquainted	with	Escher's	art.	Three	years	later	Coxeter asked	Escher	if	
he	could	include	some	of	his	tesselations pictures	as	illustrations	of	
symmetry.		Coxeter sent	Escher	a	reprint	of	his	lecture.



Figure	7	of	the	Coxeter article	resonated	strongly	with	one	of	Escher's	
own	interests,	the	problem	of	producing	an	infinitely	repeating	pattern	
in	a	finite	figure

To	a	mathematician,	Coxeter's figure	represents	a	
non-Euclidean analogue	of	a	periodic	tiling	of	

the	Euclidean	plane

Escher	wrote	to	Coxeter,	“some	of	the	text	
illustrations	and	especially	figure	7	gave	me	quite	
a	shock”	

The	figure’s	hyperbolic	tiling,	with	triangular	tiles	
diminishing	in	size	and	repeating	(theoretically)	
infinitely	within	the	confines	of	a	circle,	was	
exactly	what	Escher	had	been	looking	for	in	
order	to capture infinity in a finite space.	

Coxeter, H. S. M., "Crystal symmetry and its 
generalizations," Royal Society of Canada(3), 
51 (1957), 1-13. 

Figure 7: A 
tesselation of 
hyperbolic plane by 
30°-45°-90°
triangles 
(Poincare Disk 
Model)

CoxeterÆEscher (1958)



1958

1939

Circle Limit I, M.C. Escher (1958) 



Given any straight line and a point not on it, 

there exists one and only one straight line which 
passes through that point and never intersects the 
first line => Euclidean Geometry

there "exists more than one straight line which 
passes" through that point and never intersects the 
first line => Hyperbolic Geometry

there exists no line which passes through that point 
and never intersects the first line
=> Elliptic Geometry (e.g. Spherical geometry)

NON-EUCLIDEAN GEOMETRIES

Hyperbolic Coxeter groups are visualized
via Poincaré	disk	model in Escher’s art

Escher knew almost no mathematics

Coxeter proved	later	that	Escher’s	art	is	
mathematically	perfect	

R =	0

R >	0

R <	0



We	modify	the	kinetic	term	of	scalars	
according	to	hyperbolic	geometry

Switch	to	canonical	variables � =
p
6↵ tanh

'p
6↵

The	potential	becomes V = 3↵m2 tanh2
'p
6↵

1

2
R� 1

2

@�2

⇣
1� �2

6↵

⌘2 � 1

2
m2�2

�2 < 6↵

How to capture infinity ?

�1 < ' < 1

@Z@Z̄

(1� ZZ̄
3↵ )2



Periodic space filling for "Angels and Devils" (1941) The tessellation and the final result for the hyperbolic
tiling for "Angels and Devils”, "Circle	Limit	IV"	(1960)

Principles of Plane Tessellations

The whole surface is covered with equilateral triangles. If we 
shift the whole plane over the distance AB, it will cover the 
underlying pattern once again. This is a translation of the 
plane. We can also turn the duplicate through 60 degrees 
about the point C, and we notice that again it covers the 
original pattern exactly. This is a rotation. Also if we do 
a reflection about the line PQ, the pattern remains the same.



From	the	disk	to	a	half-plane	(the	Cayley	transform)



⌧ 0 =
a⌧ + b

c⌧ + d

Z 0 =
�Z + �

�̄Z + �̄

Isometries:	

Mobius	Transform



Möbius transformations applied to hyperbolic tilings allowed to produce  animations

Kdisk = �1

2

log

(1� Z ¯Z)

2

(1� Z2
)(1� ¯Z2

)

.



Meaning	of	the	measurement	of	the	
curvature	of	the	3d	space	

k=+1,	k=-1,	k=0	 Spatial	curvature	parameter

In	the	context	of	a-
attractors	cosmological
models,	measuring	r
means	measuring	the	
curvature	of	the	hyperbolic	
geometry	of	the	moduli	
space

ns = 1� 2

N
, r = ↵

12

N2

scalar	fields	are	coordinates	
of	the Kahler geometry

ds

2 = �dt

2 + a(t)2�ijdx
i
dx

j

RK = � 2

3↵

Decreasing	r,	decreasing	a,
increasing	curvature	RK

3↵ = R2
Escher ⇡ 103r

Hyperbolic	geometry
of	a	Poincaré disk

⌦K = �0.0003± 0.0026



B-modes 
• Thomson scattering within local quadrupole 

anisotropies generates linear polarization 
• Scalar modes Æ T, E 
• Tensor modes Æ T, E, B 
• Ratio r = ΔT / ΔS 
• Gravitational waves at LSS                 

create B-mode polarization 
• Probes Lyth bound of Inflation  
• Ekpyrotic models Æ r = 0 
 

Lorenzo Moncelsi 

Planck 2015 

BICEP2 2014 

W. Hu 

B>0 B<0 

Moriond 22/3/16 

Planck XX 2015 

BK14 w / 95GHz 2016 

Next	in	CMB	cosmology:	Relentless	observation

RK,	Linde,	Roest
2013



0.960 0.962 0.964 0.966 0.968 0.970
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

a-attractors		log10 r- ns plane

ns

R2Escher =3a =	7,6,5,4,3,2,1

B-mode	targets:	from	maximal	supersymmetry	to	minimal	supersymmetry

r	<	0.07



w2 � u2 � v2 = 3↵

u =

p
3↵ sinh� cos ✓

v =

p
3↵ sinh� sin ✓

w =

p
3↵ cosh�

ds2 =
3↵

(1� ZZ̄)2
dZdZ̄ =

3↵

4
(d�2 + sinh2 �d✓2)





BOSS: Baryon	Oscillation	Spectroscopic	Survey

Dark Energy and the Geometry of Spacefull shape (FS) 
measurements of 
galaxy clustering 

2016

Doomsday



Cosmic Doomsday Scenario: Phantom energy would trigger the Big Rip
BY
RON COWEN
11:00AM, MARCH 5, 2003
Cosmologists have long speculated about the fate of the universe. Will it expand forever or 
collapse in a Big Crunch? In the latest model, published online last week, the universe 
instead ends with a Big Rip–every galaxy, star, planet, molecule, and atom torn asunder
21 billion years from now.

Science	News

Phantom Energy and Cosmic Doomsday 
Caldwell,Kamionkowski,and Weinberg

Feb	25	2003

But what about w < −1? Matter with w < −1, dubbed “phantom energy” 1415 refs

Now	this	issue	seem	to	become	irrelevant:
Quantum	consistency	of	these	models	is	questionable!	
Future	dark	energy	probes?



Increasing	experimental	evidence	that	CC	constant	
is	a	good	fit	for	dark	energy	and	current	acceleration

⌦K ⇡ 0

We	need	to	construct	de	Sitter	vacua:
space-times	with	positive	cosmological	constant

Increasing	experimental	evidence	for	
early	universe	inflation

w0(z) ⇡ 0

1998	- 2017

w =
p

⇢
⇡ �1

Spatial	part	of	the	space-time	curvature



The clustering of galaxies in the completed SDSS-III Baryon Oscillation 
Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample 2016

⌦K = 0.0003± 0.0026

Recent	data	(CMB	and	non-CMB)	

strong affirmation of the spatially flat cold dark matter model with a cosmological constant 
(LCDM) 

1607.03155

w = �1.01± 0.06

When combined with supernova Ia data, we find H0 = 67.3 ± 1.0 even for our most general 
dark energy model, in tension with some direct measurements. 

BOSS	collaboration



In its deep wide-angle survey the LSST will be 
able to pin down the equation of state of dark 
energy to better than a few percent. Due to its 
wide coverage of the sky, the LSST is uniquely 
capable of detecting any variation in dark 
energy with direction. In turn, this will tell us 
something about physics at the earliest 
moments of our universe, and how it set the 
course for cosmic evolution.

Euclid will:

1.Investigate the properties of the 
dark energy by accurately measuring 
both the acceleration as well as the 
variation of the acceleration at 
different ages of the Universe

Future	Dark	Energy	Probes

Launch in 2020 ?Operation	from	2023	?



Maximally	symmetric	spaces	in	GR

Case	of	positive	curvature:	de	Sitter
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Figure 1.7: When an object increases enormously in size, its surface geometry becomes
almost Euclidean. This effect is fundamental to the solution of the flatness, homogeneity,
and isotropy problems in the observable part of the universe, by virtue of the exponentially
rapid inflation of the latter.

uniformity at an exponential rate, ∂iϕ∂iϕ→ 0. At the same time, the energy-momentum
tensor rapidly approaches gµν V(ϕ) (to within small corrections ∼ ϕ̇2) curvature tensor
acquires the form

Rµναβ = H2 (gµν gαβ − gµβ gνα) , (1.7.32)

Rµν = 3 H2 gµν , (1.7.33)

R = 12 H2 =
32 π

M2
P

V(ϕ) , (1.7.34)

and the difference between the properties of this domain of the universe and those of
the homogeneous, isotropic Friedmann universe (1.3.1) becomes exponentially small (in
complete accord with the “no hair” theorem for de Sitter space). After inflation, this
homogeneous and isotropic domain becomes exponentially large. This explains the ho-
mogeneity and isotropy of the observable part of the universe [54–56, 121–123].

The stretching of the scales of all inhomogeneities leads to an exponential decrease in
the density of monopoles, domain walls, gravitinos, and other entities produced before or
during inflation. If TR, the temperature of the universe after reheating, is not high enough

R = 12H2 = 4V (�)|�min = 4⇤
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7.2 The inflationary universe and de Sitter space

As we have already noted in Chapter 1, the main feature of the inflationary stage of
evolution of the universe is the slow variation (compared with the rate of expansion of the
universe) of the energy density ρ. In the limiting case ρ = const, the Einstein equation
(1.3.7) for a homogeneous universe has the de Sitter space (1.6.1)–(1.6.3) as its solution.

It is easy to see that when H t ≫ 1, the distinction between an open, closed, and flat
de Sitter space tends to vanish. Much less obvious is the fact that all three of the solutions
(1.6.1)–(1.6.3) actually describe the very same de Sitter space.

To facilitate an intuitive interpretation of a curved four-dimensional space, it is often
convenient to imagine it to be a curved four-dimensional hypersurface embedded in a
higher-dimensional space. De Sitter space is most easily represented as a hyperboloid

z2
0 − z2

1 − z2
2 − z2

3 − z2
4 = −H−2 (7.2.1)

in the five-dimensional Minkowski space (z0, z1, . . . , z4). In order to represent de Sitter
space as a flat Friedmann universe (1.3.2), (1.6.2), it suffices to consider a coordinate
system t, xi on the hyperboloid (7.2.1) defined by the relations

z0 = H−1 sinh H t +
1

2
H eH t x2 ,

z4 = H−1 cosh H t −
1

2
H eH t x2 ,

zi = eH t xi , i = 1, 2, 3 . (7.2.2)

This coordinate system spans the half of the hyperboloid with z0 + z4 > 0 (see Fig. 7.1),
and its metric takes the form

ds2 = dt2 − e2H t dx2 . (7.2.3)

De Sitter space looks like a closed Friedmann universe in the coordinate system
(t,χ, θ,ϕ) defined by

z0 = H−1 sinh H t

z1 = H−1 cosh H t cosχ ,

z2 = H−1 cosh H t sinχ cos θ ,

z3 = H−1 cosh H t sinχ sin θ cosϕ ,

z4 = H−1 cosh H t sinχ sin θ sinϕ . (7.2.4)

The metric then becomes

ds2 = dt2 − H−2 cosh2 H t [dχ2 + sin2 χ (dθ2 + sin2 θ dϕ2)] . (7.2.5)

It is important to note that in contrast to the flat-universe metric (7.2.3) and the metric
for an open de Sitter space (which we will not write out here), the closed-universe metric

a	hyperboloid	in	a	5d	Minkowski space
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z0

z1

z4

t = const

x = const

Figure 7.1: De Sitter space represented as a hyperboloid in five-dimensional space-time
(with two dimensions omitted). In the coordinates (7.2.2), three-dimensional space at
t = const is flat, expanding exponentially with increasing t — see (7.2.3). The coordinates
(7.2.2) span only half the hyperboloid.

(7.2.5) describes the entire hyperboloid. In the terminology of general relativity, one can
say that the closed de Sitter space, as distinct from the flat or open one, is geodesically
complete (see Fig. 7.2).

To gain some understanding of this situation, it is useful here to draw an analogy with
what happens near a black hole. In particular, the Schwarzschild metric does not provide
a description of events near the gravitational radius rg of the black hole, but there do
exist coordinate systems that enable one to describe what occurs within the black hole.
In the present instance, the analog of the Schwarzschild metric is the metric for a flat (or
open) de Sitter space. An even more complete analog is given by the static coordinates
(r, t, θ,ϕ):

z0 =
√

H−2 − r2 sinh H t ,

z1 =
√

H−2 − r2 cosh H t ,

z2 = r sin θ cosϕ ,

z3 = r sin θ sinϕ ,

z4 = r cos θ , 0 ≤ r ≤ H−1 . (7.2.6)

These coordinates span that part of the de Sitter space with z0 + z1 > 0, and the metric
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confinement (see his talk ‘String Theory and Quark Confinement’ from 1997), and (anecdotally)
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• Amusingly, Dirac wrote a paper in 1936 on singleton representations in AdS
3

(today we
would call this a scalar boson in AdS with a particular negative mass squared, so that it
corresponds to a free field in the CFT satisfying @2� = 0); the paper was titled “A Remarkable
respresentation of the 3+2 de Sitter group”.

2 Anti-deSitter Spacetime

So what is Anti-deSitter (AdS) spacetime?
AdSd+1

is a maximally symmetric spacetime with negative curvature7. It is a solution to Einstein’s
equations with a negative cosmological constant. A particularly useful coordinate system for it,
often referred to in the literature simply as ‘global coordinates’, is given by
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In what follows we will set the AdS length scale R = 1. However, it’s important to note that we
cannot have an AdS spacetime without choosing some particular distance (and curvature) scale.
Lengths and energies in AdS can and usually will be measured in these units.

Here the radial coordinate ⇢ 2 [0, ⇡
2

), while t 2 (�1, 1), and the angular coordinates ⌦ cover a
(d � 1)-dimensional sphere. For example, if d = 3 then we can write

d⌦2 = d✓2 + sin2 ✓ d�2 (2.2)

to cover the familiar S2. Note that although ⇢ only runs over a finite range, the spatial distance
from any ⇢ < ⇡/2 out towards ⇡/2 diverges, so AdSd+1

is not compact. In global coordinates we can
picture AdS as the interior of a cylinder, as in figure 2. Note that in these coordinates there is an
obvious time translation symmetry, and also an obvious SO(d) symmetry of rotations on the sphere.

By maximally symmetric, we mean that AdSd+1

has the maximal number of spacetime symmetries,
namely 1
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(d + 1)(d + 2). This is the same number as we have in d + 1 dimensional flat spacetime,
where we have d + 1 translations, d boosts, and 1

2

d(d � 1) rotations. The easiest way to see the
symmetries of AdS is to embed it as the solution of

XAXA ⌘ X2

0

+ X2

d+1

�
dX

i=1

X2

i = R2 (2.3)

7The use of d + 1 dimensions is conventional when studying AdS/CFT, because the dual CFT is taken to have d
spacetime dimensions.
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Figure 2: This figure shows AdS in global coordinates. The center is at ⇢ = 0, while spatial infinity
is approached as ⇢ ! ⇡/2. The global time coordinate t runs from �1 to 1.

Note again the appearance of the AdS length R. Using the abstruse equation cos2 t + sin2 t = 1 and
the related equation sec2 ⇢ = tan2 ⇢ + 1 we can map the global coordinates into the XA via8

X
0

= R
cos t

cos ⇢
(2.4)

Xd+1

= R
sin t

cos ⇢
(2.5)

Xi = R tan ⇢ ⌦̂i (2.6)

The advantage of the XA as a presentation of AdS is that all of the symmetries are just the naive
rotations and boosts of the XA. In particular, we have 1

2

d(d � 1) rotations among the Xi with
1  i  d, we have one rotation between the two timelike directions X

0

and Xd+1

, and then we have
2d boosts that mix X

0

and Xd+1

with the Xi. All of these transformations can be represented by

LA
B = XA @

@XB
� XB @

@XA
(2.7)

8To get all of AdS we need to unwrap the X
A

to their universal cover, so that t and t + 2⇡R are no longer
periodically identified.
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isometry

The	sign	of		L is	coordinate	independent

SO(2,d-1)

Conformal	symmetry	
in	Minkowski space	
dimension	d

SO(1,	d+1)	in	
Euclidean	case
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The AdS/CFT correspondence

The AdS/CFT correspondence arose as a duality between Type IIB string theory in
the background geometry AdS5 ⌦ S5 and the maximally supersymmetric quantum
field theory in D = 4 dimensions, the N = 4 super-Yang-Mills (SYM) theory
[277, 278, 279]. Most concrete results have been obtained in a low energy limit
in which the string theory is well approximated by classical supergravity, initially
D = 10 Type IIB supergravity. Applications have broadened greatly; as practiced
now, the subject includes a general correspondence between theories of gravity (plus
other fields) in D + 1 spacetime dimensions and quantum field theories without
gravity in D dimensions. Tractable calculations in a classical approximation on the
gravity side yield information about quantum systems in a strong coupling limit
for which the traditional techniques of quantum field theory are inadequate. It is
truly surprising how much information about D-dimensional quantum systems can
be captured by classical gravity in D+1 dimensions. Field theory also leads to new
insights into gravity.

Two theories related by the correspondence must have the same symmetries. The
isometry group of AdS5, namely SO(4, 2), is a particular case of the SO(D � 2, 2)
symmetry group discussed in Sec. 22.1.3. The isometry group of the sphere S5 is the
compact group SO(6). This group has the same Lie algebra as SU(4), and we use the
two symbols interchangeably. The global internal symmetry of N = 4 SYM theory
is also SU(4). It is frequently called the R-symmetry group because, as in the case of
the U(1)R symmetry of the N = 1 SUSY theories discussed in Sec. 6.2.1, fermions
and bosons transform in di↵erent representations. The spacetime symmetry of the
N = 4 theory is more unusual, although well known and understood. All fields
of the theory are massless, and the only coupling constant is dimensionless, so
the action integral is formally invariant under conformal transformations. What
is remarkable is that the renormalization e↵ects which spoil the naive conformal
symmetry in most massless theories are absent in N = 4 SYM.

The conformal group in four dimensions is SO(4, 2), so it does match the isometry
of AdS5. It is a 15 parameter group which includes the translations and Lorentz
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Most concrete results have been obtained in a low energy limit in which the 
string theory is well approximated by classical supergravity, initially D = 10 
Type IIB supergravity. 

Applications have broadened greatly; as practiced now, the subject includes a general 
correspondence between theories of gravity (plus other fields) in D + 1 spacetime dimensions 
and quantum field theories without gravity in D dimensions. Tractable calculations in a classical 
approximation on the gravity side yield information about quantum systems in a strong coupling 
limit for which the traditional techniques of quantum field theory are inadequate. It is truly 
surprising how much information about D-dimensional quantum systems can be captured by 
classical gravity in D + 1 dimensions. Field theory also leads to new insights into gravity. 

The AdS/CFT correspondence 

Important	applications	in	
condensed	matter	physics J.	Zaanen,	K.	Schalm,	…Here	in	Leiden



AdS CFT

�t

⇢

exp

✓
�t

R

◆

Figure 1: This figure shows how the AdS cylinder in global coordinates corresponds to the CFT in
radial quantization. The time translation operator in the bulk of AdS is the Dilatation operator in
the CFT, so energies in AdS correspond to dimensions in the CFT. We make this mapping very
explicit in section 5.2.2.

compatible philosophies, which I will refer to as Wilsonian and Weinbergian.
The Wilsonian philosophy is based on the idea of zooming out. Two di↵erent physical systems

that look quite di↵erent at short distances may behave the same way at long distances, because
most of the short distance details become irrelevant. In particular, we can think of our theories as
an expansion in `short/L, where `short is some microscopic distance scale and L is the length scale
relevant to our experiment. We study the space of renormalizable quantum field theories because
this is roughly equivalent to the space of universality classes of physical systems that one can obtain
by ‘zooming out’ to long distances. Here are some famous examples

• The Ising Model is a model of spins on a lattice with nearest-neighbor interactions. We can
zoom out by ‘integrating out’ half of the spins on the lattice, leaving a new e↵ective theory for
the remainder. However, at long distances the model is described by the QFT with action

S =

Z
ddx

1

2

�
(@�)2 � ��4

�
(1.4)

The details of the lattice structure become ‘irrelevant’ at long distances.

5

In	dS/CFT	the	representations	of	conformal	group	are	not	unitary,	major	issue

Attempts	to	build	holographic	cosmology



Before	quantum	corrections After	quantum	corrections

Anthropic	bound

Anthropic	approach	to	L in	string	theory:

String	theory	landscape?
KKLT-construction
of	de	Sitter	vacua
in	string	theory
using	uplifting	
anti-D3	brane10500

vacua

10�120



IIB MODULI   STABILISATION 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: U 
(Complex structure 
moduli) 

+ String Dilaton: S 

4-cycle size: τ  
(Kahler moduli) 

3-cycle size: U 
(Complex structure 
moduli) + Dilaton S 

F.	Quevedo



String	landscape	picture:	many	moduli,	one	has	to	stabilize	many	scalars	to	produce	
the	(metastable)	de	Sitter	vacua with	positive	CC	

KKLT	construction,	2003	

Many		groups	working	
Here	in	Leiden,	Achucarro,	Schalm et	al
using	Khaler function
in	Germany,	in	Italy,	in	Japan,	in	US	

Supergravity	approximation:	starting	2002,	how	to	construct	de	Sitter	vacua
inspired	by	string	theory.

De Sitter vacua in string theory
Kachru, RK, Linde, Trivedi

Towards inflation in string theory
Kachru, RK, Linde, Maldacena, McAllister, 
Trivedi

2410	refs.

1015	refs.

New	ideas	starting	2014

Anti-D3-brane in	Giddings-Kachru-Polchinski background

Lorentz Center workshop 
on Theoretical Approaches to Cosmic 
Acceleration (3-7 July, 2017)



String	theory	and	supergravity	prefer	AdS or	Minkowski vacua with	unbroken	
supersymmetry	

Kachru, Kallosh, Linde, Trivedi 2003KKLT
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ReT
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AdS minimum at 

Marco Scalisi  | DESY / KU LeuvenInflation and Attractors from Nilpotent Kähler Corrections

K = �3 log(T +

¯T )

W = W0 +A exp(�aT )
V = VT

Negative	CC

Stabilization	of	the
volume	of	the	extra
six	dimensions
(Calabi-Yau manifold)
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KKLT + anti-D3 brane uplift

Marco Scalisi  | DESY / KU LeuvenInflation and Attractors from Nilpotent Kähler Corrections
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KKLT

Kachru, Kallosh, Linde, Trivedi 2003

V

ReT

DTW = 0
AdS minimum at 

T0

KKLT + anti-D3 brane uplift

Marco Scalisi  | DESY / KU LeuvenInflation and Attractors from Nilpotent Kähler Corrections

K = �3 log(T +

¯T )

W = W0 +A exp(�aT )
V = VT+

µ4

(T + T̄ )2

KKLT
Still	2003,	positive	energy	from	the	anti-D3	brane



Ferrara, Kallosh, Linde 2014KKLT + Nilpotent Superfield

V

ReT

DTW = 0
AdS minimum at 

Marco Scalisi  | DESY / KU LeuvenInflation and Attractors from Nilpotent Kähler Corrections

V = VT +
µ4

3(T + T̄ )2

K = �3 log(T +

¯T � S ¯S)

W = W0 +A exp(�aT ) + µ2S

KKLT + anti-D3 brane uplift

The nilpotent superfield

S

2(x, ✓) = 0

S(x, ✓) = s(x) +
p
2�(x)✓ + F (x)✓2

S(x, ✓) =
��

2F
+

p
2�✓ + F✓

2

no scalar! just fermions!

Volkov, Akulov 1972,1973

Rocek; Ivanov, Kapustnikov 1978 

Lindstrom, Rocek 1979 

Komargodski, Seiberg 2009 

Casalbuoni, De Curtis, Dominici, Feruglio, Gatto 1989 

Marco Scalisi  | DESY / KU LeuvenInflation and Attractors from Nilpotent Kähler Corrections

The	scalar	is	a	bilinear	of	a	goldstino
fermions,	not	a	fundamental	field

D=4	Supergravity	Language

Represents	anti-D3	brane

Supersymmetric uplift!



Standard	linear	SUSY Non-linear	SUSY

1	Majorana fermion	 1	complex	scalar 1	Majorana fermion 2	Majorana fermions

Wess-Zumino,	1974:	minimal	SUSY	with	a

Majorana fermion	and	a	complex	scalar

Volume 49B, number  1 PHYSICS LETTERS 18 March 1974 

L m = m(FA + GB -½ i ~ O )  

and 

Lg = g [ F ( A 2 - B  2) + 2GAB - ig-~(A - V5 B) t~]. 

Here A and B are respectively a scalar and a pseudo- 
scalar field, ~k is a Majorana spinor and F and G are 
auxiliary fieldst 2. A possible further invariant 

L x = ;kF 

can always be eliminated by a shift in the field A or 
by a shift followed by a 3'5 rotation followed by a 
shift, depending on whether m 2 - 4g~, is positive or 
negative. The auxiliary fields satisfy the equations 
of  motion 

F + mA + g ( A 2 - B 2 ) =  O and G + mB ÷  2gAB=O 

which can be used to eliminate them from the La- 
grangian. The result is 

L =-½(~)taA) 2-½ (~ )  B) 2 -½ i ~ 3 ' " ~  I~ 
- }m2A 2 -½m 2 B  2 -½ im~ ,O  

- gmA (A 2 + 82)- -g2(A2+ 2) 2- ig (A-3'sa),. 

The equality of the masses and the relations among 
the various couplings are consequences of  the invar- 
iance under supergauge transformations. It is re- 
markable that this Lagrangian appears to be renor- 
malizable even when the masses and coupling con- 
stants are not independent and that the relations 
among them are preserved by renormalization. Fur- 
thermore the theory turns out to be less divergent 
when the above relations are satisfiedt 3. For in- 
stance, the quadratic divergence of  the mass renor- 
malization for the scalar and pseudoscalar fields can- 
cels among the various diagrams contributing to it. 
Similarly the logarithmic divergence of  the vertex 
correction to the spinor-scalar or the spinor-pseudo- 
scalar interaction also cancels between the two dia- 
grams where a scalar or a pseudoscalar is exchanged, 
leaving a finite vertex correction. All these state- 

t 2 We find it convenient  to use the  Majorana representat ion 
with real -r#'s, (,,go) 2 = - 1 ,  (~,s)2 = _ 1. 

i -3 The au thors  are very grateful to B.W. Lee for point ing 
out  first the  occurrence o f  cancellations and also the fact 
tha t  relations among  couplings are preserved in the one- 
loop approximat ion .  

ments have been verified first (in the one-loop approx- 
imation) using the Lagrangian in the form obtained 
by eliminating the fields F and G. 

In order to prepare the way for a future systematic 
treatment of  higher orders, it seems preferable to de- 
scribe the renormalization procedure for the original 
Lagrangian containing the fields F and G, rather than 
after elimination of  those fieldst 4 . If  one takes 
Lo+L m as unperturbed Lagrangian, one finds, in addi- 
tion to the usual propagatorst s , 

( A A )  = (BB) = A c, 
propagators for the auxiliary fields 

(FF)  = (GG) = [~A 
c 

and mixed propagators 
( A F )  = (BG) = - m A  c. 

Contrary to the more complicated situation for the 
Lagrangian without F and G, it now turns out that 
the only renormalization needed in the one-loop ap- 
proximation is a logarithmically divergent wave func- 
tion renormalization Z, the same for all fields A, B, 
~, F and G. One finds Z = 1 - 4g2I, where I is the 
logarithmically divergent intdgral 

I=--if d4k ~ 1 - I j~-~ 
(270 4 (k2+m2) 2 16rr 2 - - "  

For instance, no diagonal mass for the field A and B 
is generated. The quadratic divergence of  the self-ener- 
gy cancels among the various diagrams and the remain- 
ing logarithmically divergent self-energy is proportion- 
al to p2. Similarly, the spinor self-energy is propor- 
tional to 7Upu and the corrections to the off-diagonal 
mass terms tuFA and mGB add up to zero. Therefore, 
the only mass renormalization is that due to the 
wave-function renormalization and the renormalized 
mass m r is given by m r = mZ. The corrections to the 
couplings gFA 2, - g F B  2 and 2gGAB add up to zero, 
while the vertex corrections to the interactions 
- i g ~ d / A  and ig~75 ~bB add up to finite values and 

~4 In this fo rm the theory  can be regularized (for instance 
by the me thod  of  Pauli-Vil lars)  wi thout  spoiling super- 
gauge invariance. Therefore,  the Ward identit ies following 
f rom supergauge invariance are expected to be satisfied in 
per turbat ion theory.  The authors  are very grateful to J. 
Iliopoulos for a discussion o f  these points.  

l "s Here A c is the  usual F e y n m a n  propagator,  (u _ m2) Ac  = 
64(x-x').  

53 

LHC,	as	of	June	2017

No	SUSY	partners	yet

Gravity	NO-GO	for	de	Sitter In	pure	supergravity,	de	Sitter	vacua were	
constructed	in	2015	

p
|g|⇤ =

p
|g| f2 > 0

AdS/CFT	studies

L =

Bergshoeff,	Freedman,	RK,	Van	Proeyen;
Hasegawa,	Yamada;
Kuzenko

p
|g|⇤  0

Volkov, Akulov,	1972				Non-linearly	realized	

supersymmetry: only	fermions	are	present

L = �f2 det(1 + ig2 µ@̂µ ̄)



Conclusions
• Non-observation of strongly-produced SUSY liberates us from 

tyranny of traditional motivations. No guarantees, so focus on 
opportunities. 

• A “pick-two” strategy focuses attention in interesting places 
(UDD RPV, RPV higgsino, exotic states @ TeV scale, Higgs 
properties, various incarnations of electroweakinos…) 

• (Perhaps this should broaden our resource allocation?) 

• Many other opportunities to exploit: associated production of 
light higgsinos, kinematic features, mixed decays, stealth SM/
BSM, cascades… 

• Many of these signals only now coming into reach of the LHC 
& allow possible discoveries in the near future.

Listen to Calvin:  

LET’S GO EXPLORING!
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Why Supersymmetry?
   Hierarchy problem 

   Gauge coupling unification 

   WIMP dark matter

For 30 years, experiments testing these 
suggestive reasons were “right around 

the corner”, and SUSY became the 
dominant BSM paradigm.  

The experiments are now here.

HP: Theory

GUT: data DM
: D

AT
A
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Non-observation of strongly-produced SUSY 
liberates us from tyranny of traditional motivations 
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KKLT	construction	of	de	Sitter	vacua in	string	theory:
Positive	energy	from	anti-D3	brane

Basic	idea:	D-brane	and	anti-D-brane	are	extended	objects	in	superstring	theory.
Like	strings,	they	have	various	possible	descriptions.

1. They	are	solutions	of	d=10	supergravity

2. They	have	their	own	world-volume	action	

Anti-D-brane:		Volkov-Akulov beautiful	geometric	construction

E = dX � ✓̄�md✓

SD3 = �2T3

Z
d4� detE

ultimate	spontaneously	
broken	supersymmetry:
Majorana goldstino

The	action	of	the	kappa-symmetric	Dp-brane	when	all	fields	but	fermions	are	
truncated:	the	goldstino independent	constant	is	positive!



RK,	Quevedo,	Uranga 2015

The action of the O3-plane is

�O|0i ! �(�⌦�
T��1

⌦ )O|0i (2.2)

where �⌦ is the action on Chan-Paton indices. This result is essentially identical to the orientifold

projection in type I theory, which is related to it (in suitable toroidal compactification) by T-duality.

In our present case of a single D3-brane, Chan-Paton matrices reduce to complex numbers, and we

have �⌦ = 1. All the massless states, both for NS and R states, are odd under the orientifold action,

and therefore are projected out, so the D3-brane has no degrees of freedom at all. The physical

interpretation is that, since the D3-brane is stuck at the O3-plane, there are no massless scalars in

the spectrum; then, since the D3-brane preserves the same 16 supersymmetries as the O3-plane, this

implies that the orientifold projection removes the whole 4d N = 4 vector multiplet, i.e. the gauge

bosons and fermions as well.

The supersymmetry of the orientifold projection in the open string channel is related, by open-

closed duality, to the cancellation of closed string NSNS and RR exchanges in the closed string channel.

For the annulus diagram, this works as in the parent oriented theory; for the Moebius strip diagram,

which is responsible for the orientifold projection, this corresponds to the BPS cancellation of the

gravitational and 4-form interactions between the D3-brane and the O3-plane, see Figure ??.

Figure 1: The one-loop open string annulus and Moebius strip diagrams turns into closed string channel

diagrams describing tree level exchange of NSNS and RR states between two boundaries (branes or antibranes),

or between one boundary and one crosscap (O3-plane).

We now consider one D3-brane on top of the O3�-plane. Again, the worldvolume spectrum is

obtained by a simple orientifold action on the parent oriented spectrum in section ??. This is very

similar to the D3-brane case, except for the fact that the orientifold does not preserve the same

supersymmetries as the D3-brane. As studied in [?,?] (see also [?,?]), this manifests in an extra sign

in the orientifold action on the open string Ramond sector. This is easily derived from open-closed

duality, because the extra sign in the Moebius strip diagram for open string Ramond states maps to

an extra sign in the RR exchange between the crosscap and the boundary. This precisely matches the

6

The	one-loop	open	string	annulus	and	Moebius	strip	diagrams	turn	into	
closed	string	channel	diagrams	describing	tree	level	exchange	of	NSNS	and	
RR	states	between	two	boundaries	(branes	or	antibranes),	or	between	one	
boundary	and	one	crosscap	(O3-plane)

A	technical	tool	for	the	
string	theory	landscape
construction	and	for	
inflationary	model
building

Non-linear	supersymmetry:	not	of	the	kind	that	was	not	found	at	LHC

Volkov-Akulov,	1972 Allows	de	Sitter	vacua in	
supergravity	without	scalars

S

2(x, ✓) = 0



The	positive	contribution	to	the	vacuum	energy	which	converts	the	AdS minimum	into	
dS minimum	due	to	the	presence	of	the	non-perturbative	anti-D3	brane	can	be	
effectively	described	in	supergravity	by	the	presence	of	the	nilpotent	superfield S

String	theory	D-branes:
supersymmetric	KKLT

Cosmological	Models	with	nilpotent	
stabilizer
Antoniadis,	Dudas,	Ferrara	and	Sagnotti,	
2014
Ferrara,	RK,	Linde	2014	Dall’Agata,	Zwirner
2014	
RK,	Linde,	Scalisi,	2014	
Carrasco,	RK,	Linde,	Roest,	2015	
McDonough,	Scalisi,	2016
Ferrara,	RK,	2016
RK,	Linde,	Wrase,Yamada,	2017	

RK,	Wrase,	2014
Bergshoeff,	Dasgupta,	RK,	Wrase,	Van	Proeyen
2015
RK,	Quevedo,	Uranga 2015	
RK,	Vercnocke ,	Wrase 2016	

RK,	Linde,	Roest,	Yamada,	2017	

Anti-D3 Induced Geometric Inflation 
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1.Kahler structures were introduced by Erich Kahler in his article in 1933
with the following motivation. Given any Hermitian metric on a complex 
manifold, we can express the fundamental two–form Ω in local holomorphic 
coordinates as follows: 

He then noticed that the condition dΩ = 0 is equivalent to the local existence 
of some function G

In other words, the whole metric tensor is defined by a unique function! This 
remarkable (bemerkenswert) property of the metric allows one to obtain 
simple explicit expressions for the Christoffel symbols and the Ricci and 
curvature tensors, and “a long list of miracles occur then”. The function G
is called Kahler function

(Kahler potential	K	and	superpotential W	versus	a	Kahler function	G)

On complex Kahler Geometry A. Moroianu

⌦ = iG↵�̄dz
↵dz̄�̄

G↵�̄ =
@2G

@z↵@z̄�̄

2004



Example	of	Kahler geometry:	Poincare	disk of	unit	size,	hyperbolic	2d	geometry

ds

2 =
dx

2 + dy

2

(1� x

2 + y

2)2
=

dZdZ̄

(1� ZZ̄)2

If	we	assume	that	scalars	in	cosmology	are	coordinates	of	the	Poincare	disk,	and	
use	in	in	the	context	of	inflationary	model	building,	we	find	the	universal	formula	

ns =	1-2/N	
which	fits	the	data!

If	we	use	the	Poincare	disk	of	the	
size	R2=3a

ds2 = 3↵
dZdZ̄

(1� ZZ̄)2

we	find	the	universal	formula	for

r	=	3a 12/N2

which	is	waiting	for	the	data	on	B-modes!



One	can	have	Kahler geometry	in	the	bosonic	theory,	for	example	
Calabi-Yau complex	manifolds,	which	often	show	up	in	
compactification	of	string	theory	from	d=10	to	d=4

Kahler geometry	is	a	necessary	condition	for	supersymmetry,	
but	in	application	to	cosmology	the	most	relevant	point	is	that	
the	kinetic	term	of	scalar	field	is	defined	by	Kahler geometry.

Kahler Geometry and Supersymmetry 

Maximal	superconformal supersymmetry	requires	a	unit	size	
Poincare	disk	geometry	for	the	complex	scalar	in	this	theory		

First	constructed	here	in	the	Netherlands



Extended	Conformal	Supergravity E.	Bergshoeff,	M.	de	Roo,	B.	de	Wit Nucl.	Phys.	(1981)

Conformal	Invariance	In	Supergravity Eric	Arnold	Bergshoeff	 (1983)

Matter	Coupling	in	N=4	Supergravity M.	de	Roo Nucl.	Phys.	(1985)

ds2 =
dZdZ̄

(1� ZZ̄)2

Escher in the Sky

r	= 10-3

Relevant	inflationary	models	with	

ds2 = 3↵
dZdZ̄

(1� ZZ̄)2

Prediction	for	primordial	gravity	waves

CMB	mission	target,	2025-

a=1/3 r ⇡ 10�3

N=4	supergravity,	
maximal	superconformal		N=4	model,	
maximal	supergravity	N=8	

Ph.D.	Thesis

Related	work	by	de	Wit, van	Holten, Van	Proeyen
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