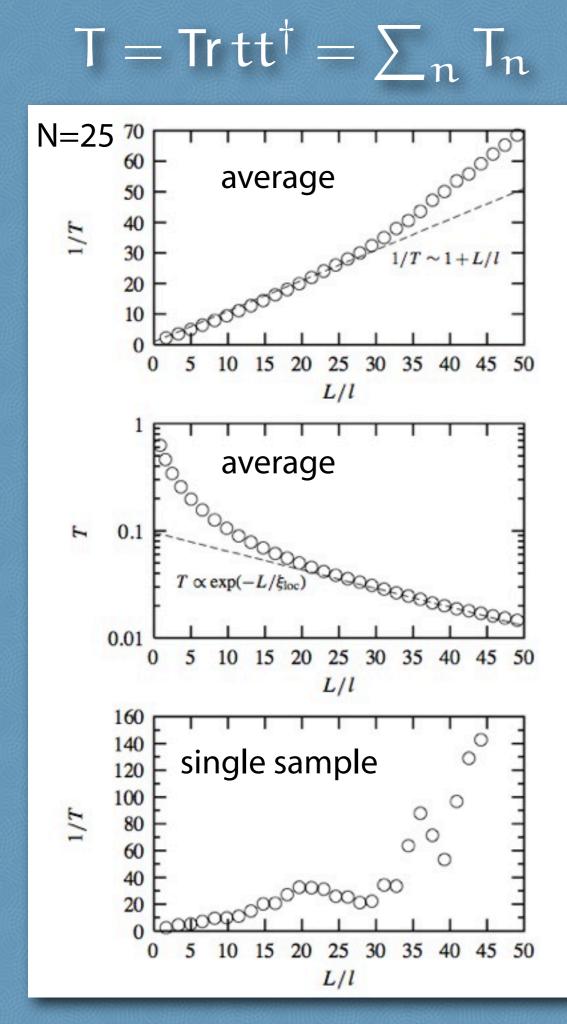
Random-matrix theory

III. localization & superconductivity



disordered wire

metal: T~1/L

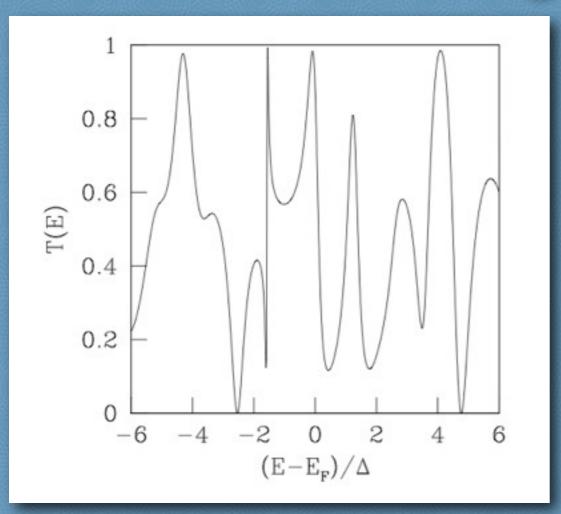
insulator: $T \sim e^{-L/\xi}$ $\xi = \beta N l$

with large sample-tosample fluctuations

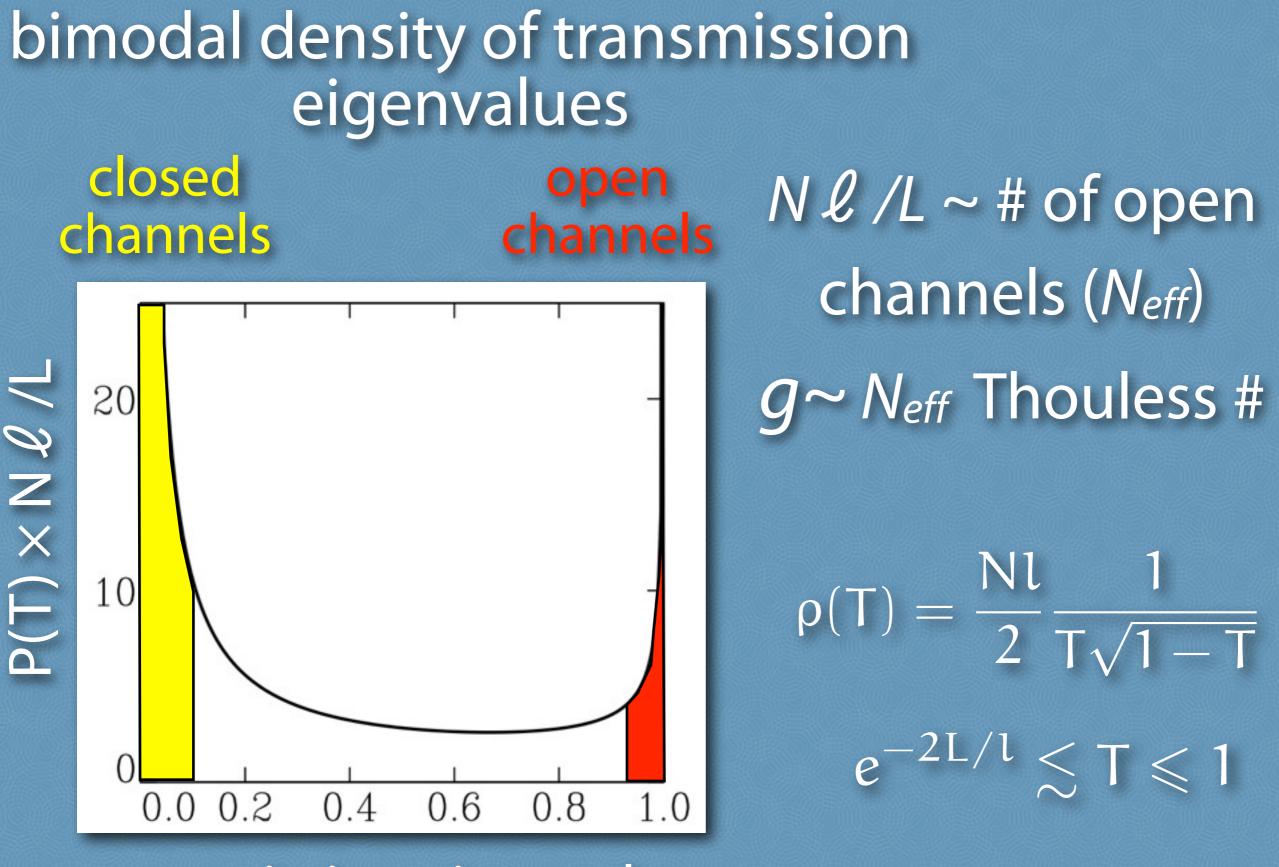
Thouless number

resonance width resonance spacing ~ conductance [*e*²/*h*] $\frac{\hbar v \ell / L^2}{\hbar v / NL} \simeq N \ell / L$ insulator: $g < 1 \rightarrow L > N \ell$

 $\xi \simeq N\ell$

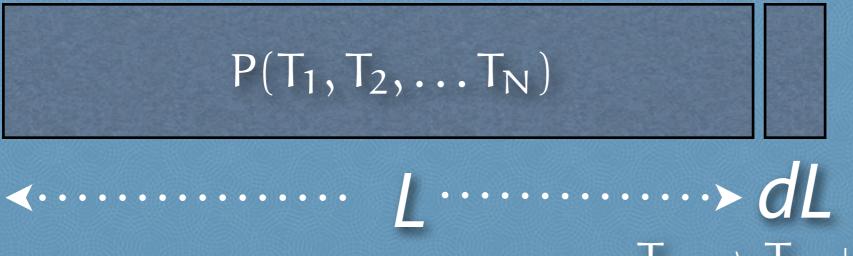


absence of diffusion for N=1



transmission eigenvalue

DMPK scaling equation Dorokhov-Mello-Pereyra-Kumar



$$\langle \delta T_n \rangle = A_n \times dL$$

 $\langle \delta T_n \delta T_m \rangle = B_{nm} \times dT_n$

 $T_n \rightarrow T_n + \delta T_n$

drift-diffusion (Fokker-Planck) eq.

$$\frac{\partial P}{\partial L} = \sum_{n} \frac{\partial}{\partial T_{n}} \left(-A_{n}P + \frac{1}{2} \sum_{m} \frac{\partial}{\partial T_{m}} B_{nm}P \right)$$

Intermezzo: solution of the DMPK equation $\frac{\partial P}{\partial s} = \frac{1}{2\gamma} \sum_{n=1}^{N} \frac{\partial}{\partial x_n} \left(\frac{\partial P}{\partial x_n} + \beta P \frac{\partial \Omega}{\partial x_n} \right)$ $\Omega = -\sum_{i=1}^{N} \sum_{j=i+1}^{N} \ln|\sinh^2 x_j - \sinh^2 x_i| - \frac{1}{\beta} \sum_{i=1}^{N} \ln|\sinh 2x_i|$ s = L/l, $T_n = 1/\cosh^2 x_n$, $\gamma = \beta N + 2 - \beta$ uniform diffusion constant in the x-variables Lyapunov exponents exact solution for $\beta=2$

Rejaei & CB 1993

mapping to free-fermion problem

$$\begin{split} \mathsf{P} &= \Psi e^{-\Omega/2} \Rightarrow -\frac{\partial \Psi}{\partial s} = \mathcal{H}\Psi, \\ \mathcal{H} &= -\frac{1}{2\gamma} \sum_{i} \left(\frac{\partial^2}{\partial x_i^2} + \frac{1}{\sinh^2 2x_i} \right) \\ &+ \frac{\beta(\beta - 2)}{2\gamma} \sum_{i < j} \frac{\sinh^2 2x_j + \sinh^2 2x_i}{(\cosh 2x_j - \cosh 2x_i)^2} \end{split}$$

variation on Calogero-Sutherland Hamiltonian (without translational invariance)

interaction vanishes for $\beta=2$

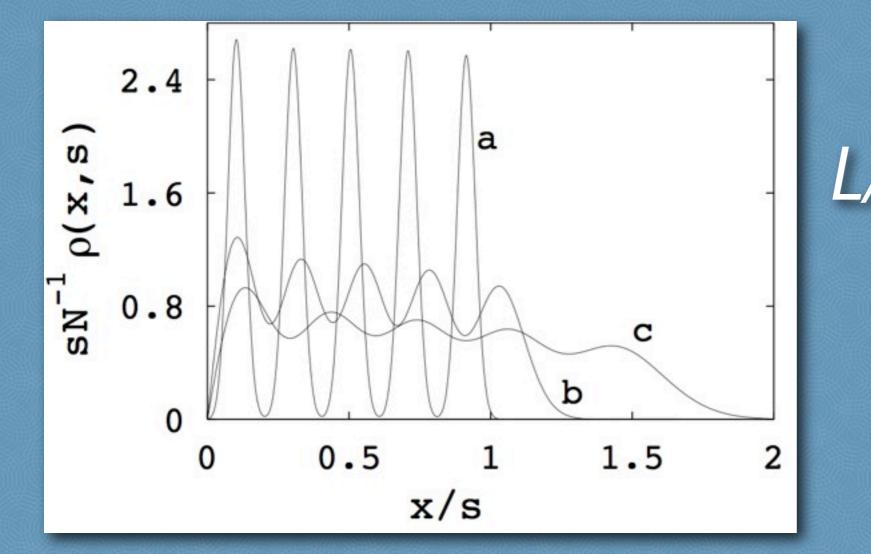
 $\beta = 2$ solution is Slater determinant: $P = C(s) \prod_{i < j} (\sinh^2 x_j - \sinh^2 x_i) \prod_i \sinh 2x_i$ $\times \operatorname{Det} \left[\int_{0}^{\infty} dk \, e^{-k^2 s/4N} \tanh(\frac{1}{2}\pi k) k^{2m-1} \mathsf{P}_{\frac{1}{2}(ik-1)}(\cosh 2x_n) \right]$ toroidal function simplifies to a Bessel function for $k \gg 1$ metallic regime $s/N = L/Nl \ll 1$ $P = C(s) \prod \left[(\sinh^2 x_j - \sinh^2 x_i) (x_j^2 - x_i^2) \right]$ $\times \prod \left[\exp(-x_i^2 N/s) (x_i \sinh 2x_i)^{1/2} \right]$

nonlogarithmic eigenvalue repulsion generalized to $\beta=1,4$ by Caselle

$$\begin{split} \mathsf{P} &= \mathsf{C}(s) \exp\left[-\beta \left(\sum_{i < j} \mathfrak{u}(x_i, x_j) + \sum_i V(x_i)\right)\right], \\ \mathfrak{u}(x_i, x_j) &= -\frac{1}{2} \ln|\sinh^2 x_j - \sinh^2 x_i| - \frac{1}{2} \ln|x_j^2 - x_i^2|, \\ \mathsf{V}(x) &= \frac{1}{2} (\gamma/s) \beta^{-1} x^2 - \frac{1}{2} \beta^{-1} \ln|x \sinh 2x|. \end{split}$$

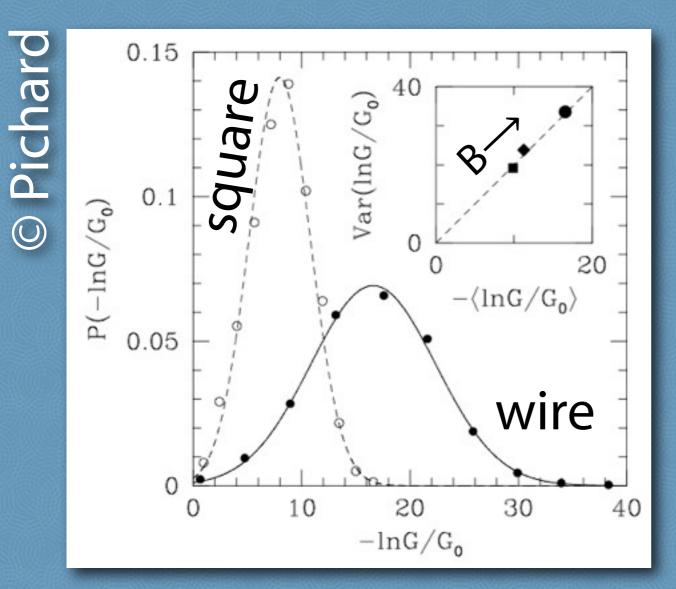
interaction with $u(x, x') = \mathcal{U}(x - x') + \mathcal{U}(x + x')$ "image charge" $\mathcal{U}(x) = -\frac{1}{2} \ln |2x \sinh x|$ localization $L \gg Nl \Rightarrow 1 \ll x_1 \ll x_2 \ll \cdots x_N$ $\Omega \approx -2\beta^{-1} \sum^{N} (1 + \beta n - \beta) x_n$ P becomes a product of Gaussians $P \approx \left(\frac{\gamma l}{2\pi L}\right)^{N/2} \prod_{n=1}^{N} \exp\left[-\frac{\gamma l}{2L} (x_n - L/\xi_n)^2\right],$ $\xi_n = \gamma l (1 + \beta n - \beta)^{-1}$

"crystallization" of the transmission eigenvalues



N=5 L/I=100,10,2 note: equal spacing of the x_n's

lognormal distribution of the conductance in the insulating regime $-\langle \ln G/G_0 \rangle = \frac{1}{2} \operatorname{Var} (\ln G/G_0) = 2L/\gamma l$ localization length $\xi = \gamma l = (\beta N + 2 - \beta) l$



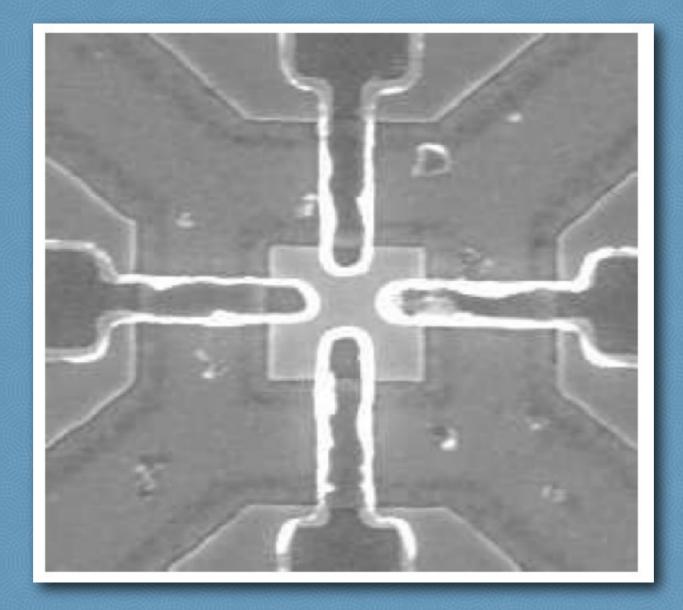
N=10

 $\xi(\beta = 2)/\xi(\beta = 1) = 20/11$

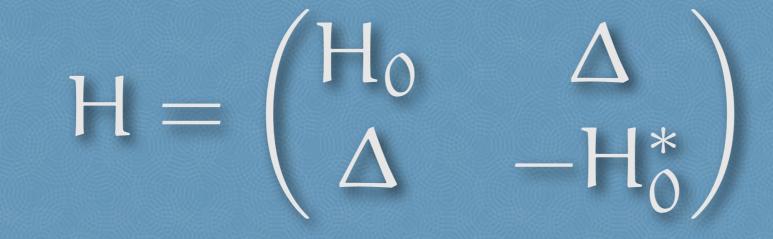
DMPK equation only valid in a wire geometry (quasi-1D); no theory for the 2D square geometry

lognormal distribution of the conductance in the insulating regime $-\langle \ln G/G_0 \rangle = \frac{1}{2} \operatorname{Var} (\ln G/G_0) = 2L/\gamma l$ localization length $\xi = \gamma l = (\beta N + 2 - \beta) l$

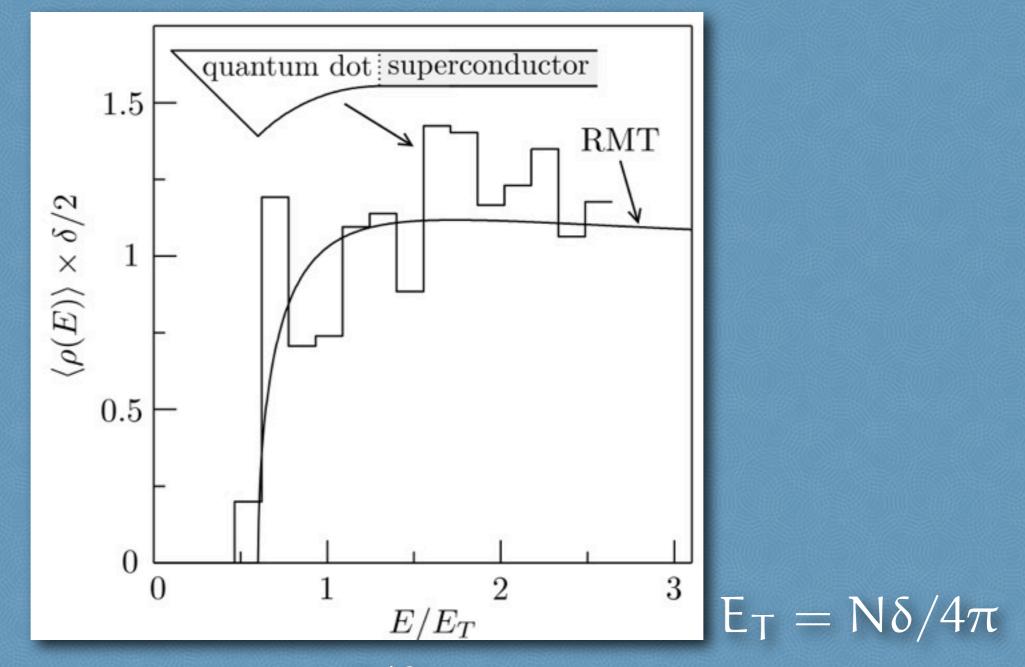
Proximity effect



Bogoliubov-De Gennes Hamiltonian

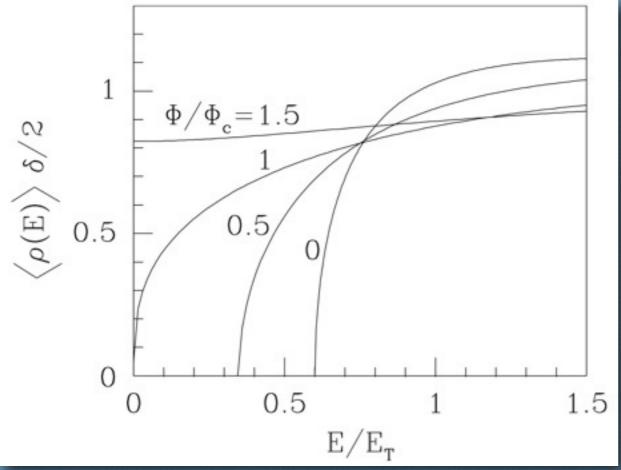


RMT: *H*⁰ random *M*×*M* matrix from GOE **Δ** fixed *M*×*M* matrix of rank *N*≪*M* particle-hole symmetry: $\rho(E) = \rho(-E)$ level repulsion opens up a gap of order Nδ (Thouless energy)

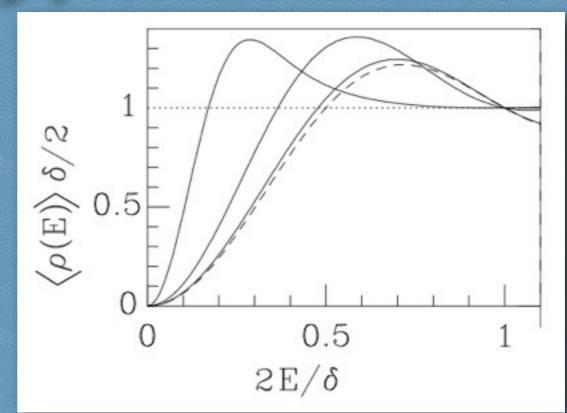


 $E_{gap} = \gamma^{5/2} N \delta / 2\pi$ mesoscopic effect of level repulsion (on a scale $N\delta \gg \delta$) Melsen, Brouwer, Frahm & CB (1996)

effect of a magnetic field *H*₀ from GUE (instead of GOE)



nstead of GOE) level repulsion becomes microscopic (gap reduced from Nδ to δ)



remaining soft gap from ±*E* symmetry Altland & Zirnbauer (1996)