
5 Semiclassics

5.1 Triangular potential well

In an earlier exercise (..c) we considered a particle confined by the potential

V (z) =
{

mg z for z > 0,

∞ for z < 0.

We estimated the ground state energy using the variational principle. Let us now calcu-
late the entire spectrum in the semiclassical approximation, using the Bohr-Sommerfeld
quantization rule,
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ħ
∮

pz d z +γ= 2πn, n = 0,1,2, . . .

a) What is the appropriate value of the phase shift γ ?
b) Calculate the energy levels En in this triangular potential well.
c) Compare the semiclassical result for the ground state E0 with that obtained earlier using
the variational principle. Which estimate is more accurate?

5.2 Landau levels

We consider the motion of an electron in the x-y plane with a perpendicular magnetic field
B = B ẑ. The classical equations of motion produce a circular orbit, with radius lc = mv/eB
at energy E = 1

2 mv2. (The radius lc is called the cyclotron length and ωc = eB/m is called
the cyclotron frequency.)

To apply the Bohr-Sommerfeld quantization rule we need the total (canonical) momentum
p= mv+ eA, consisting of a mechanical contribution pmech = mv and an electromagnetic
contribution pmagn = eA. There is a certain freedom to choose the vector potential A(r),
the socalled Landau gauge is a convenient choice for which A points in the y-direction.
Then one simply has px = mvx .

a) Find the vector potential in the Landau gauge.

b) Calculate
∫

px d x over one period of the motion and show that the energy levels (Landau
levels) are given by

En = (
n + 1

2

)ħωc , n = 0,1,2, . . .

This semiclassical result turns out to be exact.





c) Show that the quantization rule can also be expressed in terms of the flux Φ enclosed by
the cyclotron orbit: Φn = (n +1/2)h/e, n = 0,1,2, . . .
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Now consider what happens if we introduce an impenetrable wall along the line x = 0. The
classical motion near the wall is the “skipping orbit” shown in the figure. Since the motion
in the x-direction remains periodic, we can still use the Bohr-Sommerfeld quantization
rule.

d) Through which area is the flux now quantized? Use the flux quantization rule Φn =
(n +3/4)h/e (why +3/4 instead of +1/2?) to explain the plot of the energy of the n-th level
as a function of the orbit center X . Explain why the wall pushes the Landau levels up in
energy.

e) An eigenstate has the form ψ(x, y) =ψ(x)e i y py /ħ. Show that the canonical momentum py

along the wall is related to the center X of the skipping orbit by py = eB X . What can you
say about the expectation value of the velocity?

g) Imagine that a potential V (x, y) forms a local obstacle for motion along the wall. Show
(no calculation needed) that an electron incident on this obstacle is transmitted to the other
side with probability one..

This absence of reflection of edge states is at the origin of the socalled “quantum Hall ef-
fect”.





5.3 Resonant tunneling

An electron at energy E (momentum ħk) is incident on two tunnel barriers in series, at
x =±L/2. Each barrier has transmission probability Γ. We will use the WKB approximation
to calculate the probability T that the electron is transmitted through both barriers. To
construct the transmitted wave function we need to sum the amplitudes of all possible
classical trajectories that start at the left of the first barrier and end up to the right of the
second barrier. Here is one such amplitude:

An =Γe i kL[(1−Γ)e2i kL]n .

a) What classical trajectory corresponds to this wave amplitude?

b) Sum the geometric series to obtain the transmission probability,

T = Γ2

1+ (1−Γ)2 −2(1−Γ)cos(2kL)
.

Notice that T = 1 when kL is an integer multiple of π, no matter how small Γ. This phe-
nomenon of unit transmission through almost impenetrable barriers is known as resonant
tunneling.

c) What is the interpretation of the resonance condition kL = nπ ?
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