EXAM QUANTUM THEORY, 8 JANUARY 2023, 9-12 HOURS.

1. For any complex number β, consider the state $|\beta\rangle$, defined as an infinite sum of eigenstates $|n\rangle=(n!)^{-1 / 2}\left(a^{\dagger}\right)^{n}|0\rangle$ of the harmonic oscillator,

$$
\begin{equation*}
|\beta\rangle=C \sum_{n=0}^{\infty} \frac{\beta^{n}}{\sqrt{n!}}|n\rangle \tag{1}
\end{equation*}
$$

The coefficient C is a normalization constant.

- a) Show that $|\beta\rangle$ is an eigenstate with eigenvalue β of the bosonic annihilation operator a. (Such a state is called a coherent state.)
- b) Calculate the value of C such that $|\beta\rangle$ is normalized to unity.
- c) Is it possible to construct a state of the form $|\Psi\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle$, with coefficients c_{n} such that $|\Psi\rangle$ is an eigenstate of the creation operator a^{\dagger} ? Motivate your answer.

2. A quantum particle is in the ground state of a one-dimensional potential well between two infinite barriers. One barrier is fixed at $x=0$, the other barrier is at a time-dependent position $x=L(t)$. We assume that $L(t)$ first increases from L_{1} to L_{2} and then decreases back to L_{1}. You may assume that the adiabatic approximation holds, so the particle remains in the ground state. The final wave function differs from the initial wave function by a phase factor $e^{i \phi}$. The phase ϕ is the sum of the dynamical phase and the Berry phase.

- a) How slow should the motion of the barrier be for the adiabatic approximation to hold?
- b) Calculate the dynamical phase for a given time dependence $L(t)$. (You may leave the final answer in the form of an integral over time.)
- c) Show that the Berry phase equals zero for any $L(t)$.

Reminder: the Berry phase γ_{B} for a state that depends on a time-dependent parameter α is given by $\gamma_{\mathrm{B}}=i \oint\langle\alpha| \frac{\partial}{\partial \alpha}|\alpha\rangle d \alpha$.
3. The Hamiltonian of a two-dimensional Dirac fermion is given by

$$
\begin{equation*}
H=\nu p_{x} \sigma_{x}+\nu p_{y} \sigma_{y}+\mu \sigma_{z} \tag{2}
\end{equation*}
$$

in terms of Pauli matrices σ_{α}, velocity ν, and momentum operator $\boldsymbol{p}=$ (p_{x}, p_{y}). In graphene the coefficient $\mu=0$, but here we consider the more general case $\mu>0$.

- a) Does this Hamiltonian satisfy the conditions for the Kramers degeneracy theorem to apply? Motivate you answer.
- b) Calculate the energy spectrum and plot it as a function of momentum. Hint: try squaring H.
- c) The ratio μ / ν^{2} is called the mass of the Dirac fermion. Can you explain why?

4. A particle of mass m moves freely along the x-axis, with Hamiltonian $H=\frac{1}{2} p^{2} / m$.

- a) Calculate the quantum mechanical propagator

$$
G\left(x_{2}, t_{2} ; x_{1}, t_{1}\right)=\left\langle x_{2}\right| e^{-(i / \hbar)\left(t_{2}-t_{1}\right) H}\left|x_{1}\right\rangle .
$$

Hint: insert a resolution of the identity in terms of momentum eigenstates. You may use the integral $\int_{-\infty}^{\infty} e^{i a s-i b s^{2}} d s=\sqrt{\frac{\pi}{i b}} \exp \left(\frac{i a^{2}}{4 b}\right)$.

- b) Calculate the classical action $S_{\text {class }}=\int_{t_{1}}^{t_{2}} L d t$ from the Lagrangian $L=$ $\frac{1}{2} m \dot{x}^{2}$, for the classical path from point x_{1} at time t_{1} to point x_{2} at time t_{2}.
- c) Discuss the relation between G and $S_{\text {class }}$ in the context of Feynman's path integral formula.

