EXAM QUANTUM THEORY, 8 JANUARY 2023, 9-12 HOURS.

1. For any complex number β , consider the state $|\beta\rangle$, defined as an infinite sum of eigenstates $|n\rangle = (n!)^{-1/2} (a^{\dagger})^n |0\rangle$ of the harmonic oscillator,

$$|\beta\rangle = C \sum_{n=0}^{\infty} \frac{\beta^n}{\sqrt{n!}} |n\rangle.$$
⁽¹⁾

The coefficient C is a normalization constant.

• *a*) Show that $|\beta\rangle$ is an eigenstate with eigenvalue β of the bosonic annihilation operator *a*. (Such a state is called a *coherent* state.)

• *b*) Calculate the value of *C* such that $|\beta\rangle$ is normalized to unity.

• *c)* Is it possible to construct a state of the form $|\Psi\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$, with coefficients c_n such that $|\Psi\rangle$ is an eigenstate of the *creation* operator a^{\dagger} ? Motivate your answer.

2. A quantum particle is in the ground state of a one-dimensional potential well between two infinite barriers. One barrier is fixed at x = 0, the other barrier is at a time-dependent position x = L(t). We assume that L(t) first increases from L_1 to L_2 and then decreases back to L_1 . You may assume that the adiabatic approximation holds, so the particle remains in the ground state. The final wave function differs from the initial wave function by a phase factor $e^{i\phi}$. The phase ϕ is the sum of the dynamical phase and the Berry phase.

• *a*) How slow should the motion of the barrier be for the adiabatic approximation to hold?

• *b*) Calculate the dynamical phase for a given time dependence L(t). (You may leave the final answer in the form of an integral over time.)

• *c*) Show that the Berry phase equals zero for any L(t).

Reminder: the Berry phase $\gamma_{\rm B}$ *for a state that depends on a time-dependent parameter* α *is given by* $\gamma_{\rm B} = i \oint \langle \alpha | \frac{\partial}{\partial \alpha} | \alpha \rangle d\alpha$.

3. The Hamiltonian of a two-dimensional Dirac fermion is given by

$$H = \nu p_x \sigma_x + \nu p_y \sigma_y + \mu \sigma_z, \tag{2}$$

in terms of Pauli matrices σ_{α} , velocity ν , and momentum operator $p = (p_x, p_y)$. In graphene the coefficient $\mu = 0$, but here we consider the more general case $\mu > 0$.

• *a*) Does this Hamiltonian satisfy the conditions for the Kramers degeneracy theorem to apply? Motivate you answer.

• *b*) Calculate the energy spectrum and plot it as a function of momentum. *Hint: try squaring H*.

• *c*) The ratio μ/ν^2 is called the *mass* of the Dirac fermion. Can you explain why?

continued on second page

- 4. A particle of mass *m* moves freely along the *x*-axis, with Hamiltonian $H = \frac{1}{2}p^2/m$.
- *a*) Calculate the quantum mechanical propagator

 $G(x_2, t_2; x_1, t_1) = \langle x_2 | e^{-(i/\hbar)(t_2 - t_1)H} | x_1 \rangle.$

Hint: insert a resolution of the identity in terms of momentum eigenstates. You may use the integral $\int_{-\infty}^{\infty} e^{ias-ibs^2} ds = \sqrt{\frac{\pi}{ib}} \exp\left(\frac{ia^2}{4b}\right).$

- *b*) Calculate the classical action $S_{\text{class}} = \int_{t_1}^{t_2} L dt$ from the Lagrangian $L = \frac{1}{2}m\dot{x}^2$, for the classical path from point x_1 at time t_1 to point x_2 at time t_2 .
- *c)* Discuss the relation between *G* and *S*_{class} in the context of Feynman's path integral formula.