EXAM QUANTUM THEORY, 3 JANUARY 2022, 14.15-17.15 HOURS.

1. .

- a) You are given an anti-unitary operator \mathcal{T} which satisfies $\mathcal{T}^{2}=e^{i \phi} I$, with ϕ a real number and I the identity operator. Prove that \mathcal{T}^{2} equals either $+I$ or $-I$.
- b) Consider a unitary operator U which commutes with \mathcal{T}. Assume that $\mathcal{T}^{2}=+I$. Prove that if λ is an eigenvalue of U, then also the complex conjugate λ^{*} is an eigenvalue.

2. A particle moves along the x-axis in the potential $V(x)=V_{0}|x|$, with $V_{0}>0$.

- a) Make a sketch of the absolute value of the wave function $\Psi_{n}(x)$ for the ground state and the first two excited states. (Indicate which is which.) Pay particular attention to sign changes of $\Psi_{n}(x)$ and to the $\pm x$ symmetry.
We seek the energy spectrum in the Bohr-Sommerfeld approximation,

$$
\frac{1}{\hbar} \oint p_{x} d x+\gamma=2 \pi n, \quad n=0,1,2, \ldots
$$

-b) What is the appropriate value of the phase shift γ ?

- c) Calculate the energy levels E_{n}.

3. A particle (charge q, mass m) in a magnetic field $\vec{B}(\vec{r})=\nabla \times \vec{A}(\vec{r})$ has Hamiltonian

$$
H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}, \text { with } \vec{p}=-i \hbar \nabla .
$$

- a) Determine the Heisenberg equation of motion for the position operator \vec{r}, to obtain an expression for the velocity operator \vec{v}.
We now investigate the effect of a gauge transformation of the vector potential, $\vec{A}^{\prime}(\vec{r})=\vec{A}(\vec{r})+\nabla \chi(\vec{r})$, for a given function $\chi(\vec{r})$. The Hamiltonian with \vec{A} replaced by $\overrightarrow{A^{\prime}}$ is denoted by H^{\prime}.
- b) Verify that H and H^{\prime} are related by $H^{\prime}=U H U^{\dagger}$ for a certain unitary operator U.
- c) How are the eigenvalues of H and H^{\prime} related? And how are the eigenfunctions related?

4. The Hamiltonian

$$
H=\left(\begin{array}{cc}
\alpha^{2}+a^{\dagger} a & \alpha a+\beta a^{\dagger} \tag{1}\\
\alpha a^{\dagger}+\beta a & \beta^{2}+a^{\dagger} a
\end{array}\right)=Q^{\dagger} Q, \text { for } Q=\left(\begin{array}{ll}
\alpha & a \\
a & \beta
\end{array}\right),
$$

is known in quantum optics as a Rabi Hamiltonian. The operators a^{\dagger} and a are bosonic creation and annihilation operators, the coefficients α, β are real numbers. The operator H is a 2×2 matrix which acts on the two-component wave function $\Psi=\left(\psi_{1}, \psi_{2}\right)$.

- a) Consider first the case $\alpha=\beta$. Show that the unitary transformation $H^{\prime}=U H U^{\dagger}$ with $U=2^{-1 / 2}\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$ brings the Hamiltonian to the diagonal form

$$
H^{\prime}=\left(\begin{array}{cc}
b^{\dagger} b & 0 \tag{2}\\
0 & c^{\dagger} c
\end{array}\right)
$$

How are the operators b and c related to a ? Compute the commutators [b, b^{\dagger}] and $\left[c, c^{\dagger}\right]$.

- b) Compute the eigenvalues of H for the case $\alpha=\beta$.
- c) Now consider the case of arbitrary real numbers α, β. Denote by $|\gamma\rangle$ the coherent state, such that $a|\gamma\rangle=\gamma|\gamma\rangle$, with γ an arbitary complex number.
Find the value of γ such that the state $\left|\Psi_{0}\right\rangle=\binom{\sqrt{\beta}|\gamma\rangle}{-\sqrt{\alpha}|\gamma\rangle}$ is an eigenstate of H with eigenvalue $E_{0}=0$.
- d) Prove that $\left|\Psi_{0}\right\rangle$ is the ground state of H, meaning that $E_{0}=0$ is the lowest eigenvalue.

