EXAM QUANTUM THEORY, 3 JANUARY 2022, 14.15-17.15 HOURS.

1. .

- *a*) You are given an *anti-unitary* operator \mathcal{T} which satisfies $\mathcal{T}^2 = e^{i\phi}I$, with ϕ a real number and I the identity operator. Prove that \mathcal{T}^2 equals either +I or -I.
- *b*) Consider a *unitary* operator *U* which commutes with *T*. Assume that *T*² = +*I*. Prove that if λ is an eigenvalue of *U*, then also the complex conjugate λ* is an eigenvalue.
- 2. A particle moves along the *x*-axis in the potential $V(x) = V_0|x|$, with $V_0 > 0$.
- *a*) Make a sketch of the absolute value of the wave function $\Psi_n(x)$ for the ground state and the first two excited states. (Indicate which is which.) Pay particular attention to sign changes of $\Psi_n(x)$ and to the $\pm x$ symmetry.

We seek the energy spectrum in the Bohr-Sommerfeld approximation,

$$\frac{1}{\hbar}\oint p_x dx + y = 2\pi n, \ n = 0, 1, 2, \dots$$

- *b*) What is the appropriate value of the phase shift *y*?
- *c*) Calculate the energy levels E_n .
- 3. A particle (charge *q*, mass *m*) in a magnetic field $\vec{B}(\vec{r}) = \nabla \times \vec{A}(\vec{r})$ has Hamiltonian

$$H = \frac{1}{2m} (\vec{p} - q\vec{A})^2, \text{ with } \vec{p} = -i\hbar\nabla.$$

• *a)* Determine the Heisenberg equation of motion for the position operator \vec{r} , to obtain an expression for the velocity operator \vec{v} .

We now investigate the effect of a gauge transformation of the vector potential, $\vec{A'}(\vec{r}) = \vec{A}(\vec{r}) + \nabla \chi(\vec{r})$, for a given function $\chi(\vec{r})$. The Hamiltonian with \vec{A} replaced by $\vec{A'}$ is denoted by H'.

- *b*) Verify that *H* and *H*' are related by *H*' = *UHU*[†] for a certain unitary operator *U*.
- *c)* How are the eigenvalues of *H* and *H'* related? And how are the eigenfunctions related?

continued on second page

4. The Hamiltonian

$$H = \begin{pmatrix} \alpha^2 + a^{\dagger}a & \alpha a + \beta a^{\dagger} \\ \alpha a^{\dagger} + \beta a & \beta^2 + a^{\dagger}a \end{pmatrix} = Q^{\dagger}Q, \text{ for } Q = \begin{pmatrix} \alpha & a \\ a & \beta \end{pmatrix},$$
(1)

is known in quantum optics as a *Rabi Hamiltonian*. The operators a^{\dagger} and a are bosonic creation and annihilation operators, the coefficients α , β are real numbers. The operator *H* is a 2×2 matrix which acts on the two-component wave function $\Psi = (\psi_1, \psi_2)$.

• *a*) Consider first the case $\alpha = \beta$. Show that the unitary transformation $H' = UHU^{\dagger}$ with $U = 2^{-1/2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ brings the Hamiltonian to the diagonal form

$$H' = \begin{pmatrix} b^{\dagger}b & 0\\ 0 & c^{\dagger}c \end{pmatrix}.$$
 (2)

How are the operators *b* and *c* related to *a*? Compute the commutators $[b, b^{\dagger}]$ and $[c, c^{\dagger}]$.

- *b*) Compute the eigenvalues of *H* for the case $\alpha = \beta$.
- *c*) Now consider the case of arbitrary real numbers α , β . Denote by $|\gamma\rangle$ the coherent state, such that $a|\gamma\rangle = \gamma |\gamma\rangle$, with γ an arbitrary complex number.

Find the value of γ such that the state $|\Psi_0\rangle = \begin{pmatrix} \sqrt{\beta} |\gamma\rangle \\ -\sqrt{\alpha} |\gamma\rangle \end{pmatrix}$ is an eigenstate of H with eigenvalue $E_0 = 0$.

• *d*) Prove that $|\Psi_0\rangle$ is the *ground state* of *H*, meaning that $E_0 = 0$ is the lowest eigenvalue.