1. a) $a|\beta\rangle=C \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!} a\left(a^{\dagger}\right)^{n}|0\rangle=C \sum_{n=1}^{\infty} \frac{n \beta^{n}}{n!}\left(a^{\dagger}\right)^{n-1}|0\rangle=\beta|\beta\rangle$.
b) $\langle\beta \mid \beta\rangle=C^{*} \sum_{n=0}^{\infty} \frac{\left(\beta^{*}\right)^{n}}{n!}\langle 0| a^{n}|\beta\rangle=C^{*} \sum_{n=0}^{\infty} \frac{\left(\beta \beta^{*}\right)^{n}}{n!}\langle 0 \mid \beta\rangle=|C|^{2} e^{|\beta|^{2}}=1$, so $C=e^{-|\beta|^{2} / 2}$.
c) Act on this state with a^{\dagger}, so raise the number of quanta in each term of the sum by 1 unit. Then the sum will no longer have the state $|0\rangle$ with zero quanta, so c_{0} must be zero if $|\Psi\rangle$ is to be an eigenstate of a^{\dagger}. But if $c_{0}=0$, the state $|\Psi\rangle$ has no term with 0 quanta, hence $a^{\dagger}|\Psi\rangle$ has no term with 1 quantum, so also c_{1} must be zero. And so on, all coefficients must be zero if $|\Psi\rangle$ is an eigenstate of a^{\dagger}, which does not give a valid eigenstate.
2. a) The energy separation between ground state and first excited state is $\delta E(t)=(3 / 2 m)[\hbar \pi / L(t)]^{2}$ and we need $\hbar|d \delta E / d t| \ll(\delta E)^{2}$, so $d L / d t \ll$ $\hbar / m L(t)$; the adiabatic approximation holds if $d L / d t \ll \hbar / m L_{2}$.
b) The energy varies in time as $E(t)=(\hbar \pi / L(t))^{2} / 2 m$ from $t=0$ to $t=T$, the dynamical phase is $\left(\hbar \pi^{2} / 2 m\right) \int_{0}^{T} L(t)^{-2} d t$.
c) The wave function varies in time as $\psi(x, t)=(L(t) / 2)^{-1 / 2} \sin (\pi x / L(t))$, Berry phase is $i \oint\langle\psi| d / d L|\psi\rangle d L$. We evaluate $\langle\psi| d / d L|\psi\rangle=\int_{0}^{L} d x \frac{1}{2} \frac{d}{d L} \psi(x, t)^{2}=$ $\frac{1}{2} \frac{d}{d L} \int_{0}^{L} d x \psi(x, t)^{2}-\frac{1}{2} \psi(L, t)^{2}=0$.
3. a) Kramers theorem requires time-reversal symmetry, which means that H should be invariant if $\boldsymbol{p} \mapsto-\boldsymbol{p}$ and $\sigma_{\alpha} \mapsto-\sigma_{\alpha}$. A nonzero μ breaks that symmetry, so Kramers theorem does not apply.
b) Squaring H produces a unit matrix times $\nu^{2} p_{x}^{2}+v^{2} p_{y}^{2}+\mu^{2}$, so the spectrum consists of the two branches $\pm \sqrt{\nu^{2} p_{x}^{2}+v^{2} p_{y}^{2}+\mu^{2}}$.
c) Expansion near $\boldsymbol{p}=0$ gives (for the positive energy branch) $\mu+\nu^{2}|\boldsymbol{p}|^{2} / 2 \mu$ plus higher order terms. This is the dispersion relation of a particle of mass μ / ν^{2}.
4. (a) insert a resolution of the identity $\int d p|p\rangle\langle p|$ to write

$$
\begin{aligned}
G & =(2 \pi \hbar)^{-1} \int_{-\infty}^{\infty} d p \exp \left(\frac{i}{\hbar}\left(x_{2}-x_{1}\right) p\right) \exp \left(-\frac{i}{\hbar}\left(t_{2}-t_{1}\right) \frac{p^{2}}{2 m}\right) \\
& =\exp \left(\frac{i m\left(x_{2}-x_{1}\right)^{2}}{2 \hbar\left(t_{2}-t_{1}\right)}\right) \sqrt{\frac{m}{2 \pi i \hbar\left(t_{2}-t_{1}\right)}}
\end{aligned}
$$

(a) free motion at constant velocity $\dot{x}=v=\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right)$, so the action is $S_{\text {class }}=\frac{1}{2} m v^{2}\left(t_{2}-t_{1}\right)=\frac{1}{2} m\left(x_{2}-x_{1}\right)^{2} /\left(t_{2}-t_{1}\right)$.
(c) Feynman's path integral formula: $G\left(x_{2}, t_{2} ; x_{1}, t_{1}\right) \propto \sum_{\text {paths }} \exp \left(\frac{i}{\hbar} S_{\text {path }}\right)$. In the semiclassical limit only classical paths contribute; in this case there is a single classical path, so $G \propto e^{i S_{\text {class }} / \hbar}$; the proportionality constant contains fluctuations around the classical path.

