ANSWERS TO THE EXAM QUANTUM THEORY, 8 JANUARY 2024 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

1. $a\rangle a|\beta\rangle = C \sum_{n=0}^{\infty} \frac{\beta^n}{n!} a(a^{\dagger})^n |0\rangle = C \sum_{n=1}^{\infty} \frac{n\beta^n}{n!} (a^{\dagger})^{n-1} |0\rangle = \beta|\beta\rangle.$ $b\rangle \langle\beta|\beta\rangle = C^* \sum_{n=0}^{\infty} \frac{(\beta^*)^n}{n!} \langle 0|a^n|\beta\rangle = C^* \sum_{n=0}^{\infty} \frac{(\beta\beta^*)^n}{n!} \langle 0|\beta\rangle = |C|^2 e^{|\beta|^2} = 1$, so $C = e^{-|\beta|^2/2}.$

c) Act on this state with a^{\dagger} , so raise the number of quanta in each term of the sum by 1 unit. Then the sum will no longer have the state $|0\rangle$ with zero quanta, so c_0 must be zero if $|\Psi\rangle$ is to be an eigenstate of a^{\dagger} . But if $c_0 = 0$, the state $|\Psi\rangle$ has no term with 0 quanta, hence $a^{\dagger}|\Psi\rangle$ has no term with 1 quantum, so also c_1 must be zero. And so on, all coefficients must be zero if $|\Psi\rangle$ is an eigenstate of a^{\dagger} , which does not give a valid eigenstate.

- 2. *a*) The energy separation between ground state and first excited state is $\delta E(t) = (3/2m)[\hbar\pi/L(t)]^2$ and we need $\hbar |d\delta E/dt| \ll (\delta E)^2$, so $dL/dt \ll \hbar/mL(t)$; the adiabatic approximation holds if $dL/dt \ll \hbar/mL_2$. *b*) The energy varies in time as $E(t) = (\hbar\pi/L(t))^2/2m$ from t = 0 to t = T, the dynamical phase is $(\hbar\pi^2/2m)\int_0^T L(t)^{-2} dt$. *c*) The wave function varies in time as $\psi(x,t) = (L(t)/2)^{-1/2}\sin(\pi x/L(t))$, Berry phase is $i \oint \langle \psi | d/dL | \psi \rangle dL$. We evaluate $\langle \psi | d/dL | \psi \rangle = \int_0^L dx \frac{1}{2} \frac{d}{dL} \psi(x,t)^2 = \frac{1}{2} \frac{d}{dL} \int_0^L dx \, \psi(x,t)^2 - \frac{1}{2} \psi(L,t)^2 = 0$.
- 3. *a*) Kramers theorem requires time-reversal symmetry, which means that *H* should be invariant if $\mathbf{p} \mapsto -\mathbf{p}$ and $\sigma_{\alpha} \mapsto -\sigma_{\alpha}$. A nonzero μ breaks that symmetry, so Kramers theorem does not apply.

b) Squaring *H* produces a unit matrix times $v^2 p_x^2 + v^2 p_y^2 + \mu^2$, so the spectrum consists of the two branches $\pm \sqrt{v^2 p_x^2 + v^2 p_y^2 + \mu^2}$.

c) Expansion near $\boldsymbol{p} = 0$ gives (for the positive energy branch) $\mu + \nu^2 |\boldsymbol{p}|^2 / 2\mu$ plus higher order terms. This is the dispersion relation of a particle of mass μ / ν^2 .

4. (*a*) insert a resolution of the identity $\int dp |p\rangle \langle p|$ to write

$$G = (2\pi\hbar)^{-1} \int_{-\infty}^{\infty} dp \exp\left(\frac{i}{\hbar}(x_2 - x_1)p\right) \exp\left(-\frac{i}{\hbar}(t_2 - t_1)\frac{p^2}{2m}\right)$$

= $\exp\left(\frac{im(x_2 - x_1)^2}{2\hbar(t_2 - t_1)}\right) \sqrt{\frac{m}{2\pi i\hbar(t_2 - t_1)}}.$

(*a*) free motion at constant velocity $\dot{x} = v = (x_2 - x_1)/(t_2 - t_1)$, so the action is $S_{\text{class}} = \frac{1}{2}mv^2(t_2 - t_1) = \frac{1}{2}m(x_2 - x_1)^2/(t_2 - t_1)$.

(c) Feynman's path integral formula: $G(x_2, t_2; x_1, t_1) \propto \sum_{\text{paths}} \exp\left(\frac{i}{\hbar}S_{\text{path}}\right)$. In the semiclassical limit only classical paths contribute; in this case there is a single classical path, so $G \propto e^{iS_{\text{class}}/\hbar}$; the proportionality constant contains fluctuations around the classical path.