Answers to the Exam Quantum Theory, 24 January 2022
each item gives 2 points for a fully correct answer, grade $=$ total $\times 9 / 24+1$

1. a) $U^{-1} \mathcal{T} \Psi=\mathcal{T} U \Psi=\mathcal{T} \lambda \Psi=\lambda^{*} \mathcal{T} \Psi$, so Ψ^{\prime} is an eigenstate of U^{-1} with eigenvalue λ^{*}, and hence an eigenstate of U with eigenvalue $1 / \lambda^{*}$. Since the eigenvalues of the unitary operator U are of the form $e^{i \phi}$ with real ϕ, we have $1 / \lambda^{*}=\lambda$.
b) Suppose $\Psi^{\prime}=c \Psi$, so $\mathcal{T} \Psi=c \Psi$; apply \mathcal{T} to both sides, $-\Psi=\mathcal{T}^{2} \Psi=$ $c^{*} \mathcal{T} \Psi=|c|^{2} \Psi$, which is a contradiction since $\Psi \neq 0$.
2. a) Alice is right: $|\Psi\rangle^{*}$ is an eigenstate with eigenvalue λ^{*} of a^{*} not of a^{\dagger}.
b) $\langle n+1 \mid \beta\rangle=\beta^{-1}\langle n+1| a^{\dagger}|\beta\rangle=\beta^{-1} \sqrt{n+1}\langle n \mid \beta\rangle=0$
c) $\langle 0 \mid \beta\rangle=\beta^{-1}\langle 0| a^{\dagger}|\beta\rangle=0$; this is the first step of the induction process, hence $\langle n \mid \beta\rangle=0$ for all $n \geq 0$, which means that the state $|\beta\rangle$ is identically zero, so it cannot be an eigenstate. The conclusion is that eigenstates of the annihilation operator do not exist.
Since $a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$, no superposition of number states can be annihilated by a^{\dagger}, hence the eigenvalue $\beta=0$ is not possible.
3. a) The operator $A^{\dagger}=\frac{1}{2} v x p-\frac{1}{4} i \hbar v=\frac{1}{2} v p x+\frac{1}{4} i \hbar v=A$, so it is Hermitian. Hence $U^{\dagger}=e^{-i t A^{\dagger} / \hbar}=e^{-i t A / \hbar}=U^{-1}$, so it is unitary.
b) $d P / d t=(i / \hbar) U[A, p] U^{-1}=-\frac{1}{2} v U p U^{-1}=-\frac{1}{2} v P$;
$d X / d t=(i / \hbar) U[A, X] U^{-1}=\frac{1}{2} v U x U^{-1}=\frac{1}{2} v X$. The commutators follow from $[A, p]=\frac{1}{2} v\left(p x p-p^{2} x\right)=\frac{1}{2} i \hbar v p,[A, x]=\frac{1}{2} v\left(p x^{2}-x p x\right)=-\frac{1}{2} i \hbar v x$. c) $P(t)=e^{-v t / 2} P(0)=e^{-v t / 2} p, X(t)=e^{v t / 2} X(0)=e^{v t / 2} x$.
$U(t) H(0) U^{-1}(t)=P(t)^{2} / 2 m_{0}+m_{0} \omega^{2} X(t)^{2} / 2=e^{-v t} p^{2} / 2 m_{0}+m_{0} \omega^{2} e^{v t} x^{2} / 2=$ $H(t)$.
d) $i \hbar d \psi / d t=H(t) \psi=U(t) H(0) U^{-1}(t) \psi$, define $\tilde{\psi}=U^{-1} \psi$, then $H_{0} \tilde{\psi}=$ $i \hbar U^{-1} d \psi / d t=i \hbar d \tilde{\psi} / d t-i \hbar\left(d U^{-1} / d t\right) U \tilde{\psi}=i \hbar d \tilde{\psi} / d t+A \tilde{\psi}$. Hence $i \hbar d \tilde{\psi} / d t=$ $(H(0)-A) \tilde{\psi} \Rightarrow \tilde{\psi}(t)=\exp [-(i / \hbar)(H(0)-A)] \tilde{\psi}(0) \Rightarrow \psi(t)=U(t) \tilde{\psi}(t)=$ $U(t) \exp [-(i / \hbar)(H(0)-A)] \psi(0)$.
So Charlie has overlooked the term A in the exponent. Without that term, the harmonic oscillator remains an eigenstate of $H(t)$ if it starts out as an eigenstate, with the same eigenvalue, there are no transitions to other states - this is the adiabatic approximation.
4. (a) free motion at constant velocity $\dot{x}=v=\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right)$, so the action is $S_{\text {class }}=\frac{1}{2} m v^{2}\left(t_{2}-t_{1}\right)=\frac{1}{2} m\left(x_{2}-x_{1}\right)^{2} /\left(t_{2}-t_{1}\right)$.
(b) insert a resolution of the identity $\int d p|p\rangle\langle p|$ to write

$$
\begin{aligned}
G & =(2 \pi \hbar)^{-1} \int_{-\infty}^{\infty} d p \exp \left(\frac{i}{\hbar}\left(x_{2}-x_{1}\right) p\right) \exp \left(-\frac{i}{\hbar}\left(t_{2}-t_{1}\right) \frac{p^{2}}{2 m}\right) \\
& =\exp \left(\frac{i m\left(x_{2}-x_{1}\right)^{2}}{2 \hbar\left(t_{2}-t_{1}\right)}\right) \sqrt{\frac{m}{2 \pi i \hbar\left(t_{2}-t_{1}\right)}} .
\end{aligned}
$$

(c) Feynman's path integral formula: $G\left(x_{2}, t_{2} ; x_{1}, t_{1}\right) \propto \sum_{\text {paths }} \exp \left(\frac{i}{\hbar} S_{\text {path }}\right)$. In the semiclassical limit only classical paths contribute; in this case there is a
single classical path, so $G \propto e^{i S_{\text {class }} / \hbar}$; the proportionality constant contains fluctuations around the classical path.

