1. (a) P is Hermitian if $P=P^{\dagger}$, with the Hermitian conjugate P^{\dagger} defined by $\langle\phi \mid P \psi\rangle=\left\langle P^{\dagger} \phi \mid \psi\right\rangle$; the parity operator is Hermitian because
$\langle\phi \mid P \psi\rangle=\int d x \phi^{*}(x) P \psi(x)=\int d x \phi^{*}(x) \psi(-x)=\int d x \phi^{*}(-x) \psi(x)=\left\langle P^{\dagger} \phi \mid \psi\right\rangle$
(b) $P^{2}=I$ equals the identity operator I, so $P^{-1}=P=P^{\dagger}$, which is the definition of a unitary operator; the eigenvalues satisfy $p^{2}=1 \rightarrow p= \pm 1$.
(c) If ψ is an eigenstate of H with a nondegenerate eigenvalue E, and P commutes with H, then also $P \psi$ is an eigenstate of H with the same eigenvalue E, since $H P \psi=P H \psi=E P \psi$; if E is nondegenerate, the two eigenstates ψ and $P \psi$ must be linearly related, so we must have $P \psi=\lambda \psi$ for some number λ, hence ψ is an eigenfunction of the parity operator, hence either $\lambda=+1$ and $\psi(x)=\psi(-x)$ (even function) or $\lambda=-1$ and $\psi(x)=-\psi(-x)$ (odd function).
2. a) $S^{\dagger}(s)=\exp \left(\frac{1}{2} s a^{\dagger} a^{\dagger}-\frac{1}{2} s a a\right)=S(s)^{-1} \neq S(s)$, so this operator is unitary but not Hermitian.

$$
\begin{aligned}
& \text { b) }\langle s| \hat{x}|s\rangle=\langle 0| S^{\dagger}(s) \hat{x} S(s)|0\rangle \\
& =2^{-1 / 2}\langle 0|\left(a \cosh s-a^{\dagger} \sinh s\right)+\left(a^{\dagger} \cosh s-a \sinh s\right)|0\rangle=0 \\
& \langle s| \hat{x}^{2}|s\rangle=(1 / 2)\langle 0|\left(a(\cosh s-\sinh s)+a^{\dagger}(\cosh s-\sinh s)\right)^{2}|0\rangle \\
& =(1 / 2)(\cosh s-\sinh s)^{2}=(1 / 2) e^{-2 s} .
\end{aligned}
$$

c) there is no contradiction: the uncertainty principle provides a lower bound to the product of the variance of position and momentum, so if the variance of position goes to zero for $s \rightarrow 0$, the variance of momentum must diverge as $e^{2 s}$.
3. a) $H=-\left(\mu B_{0} / 2\right)\left(\begin{array}{cc}0 & e^{-i \omega t} \\ e^{i \omega t} & 0\end{array}\right), U H U^{\dagger}=-\left(\mu B_{0} / 2\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \equiv H^{\prime}$
b) $i \hbar U d \psi / d t=U H U^{\dagger} U \psi=H^{\prime} \tilde{\psi}$,
$U d \psi / d t=d \tilde{\psi} / d t-(d U / d t) \psi=d \tilde{\psi} / d t-(i \omega / 2)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \tilde{\psi}$
$\Rightarrow i \hbar d \tilde{\psi} / d t=H^{\prime} \tilde{\psi}-(\hbar \omega / 2)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \tilde{\psi}$
c) $\tilde{\psi}(t)=\exp (-(i / \hbar) \tilde{H} t) \tilde{\psi}(0)$, with $\tilde{\psi}(0)=\psi(0)=(1,0)$.
the exponent of the 2×2 matrix can be calculated using the given identity, with $a=\omega t / 2, b=\mu B_{0} t / 2 \hbar, r=(t / 2 \hbar) \sqrt{\hbar^{2} \omega^{2}+\mu^{2}}$.
The result is $u(t)=\cos r+i(a / r) \sin r, v(t)=i(b / r) \sin r$.
4. (a) free motion at constant velocity $\dot{x}=v=\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right)$, so the action is $S_{\text {class }}=\frac{1}{2} m v^{2}\left(t_{2}-t_{1}\right)=\frac{1}{2} m\left(x_{2}-x_{1}\right)^{2} /\left(t_{2}-t_{1}\right)$.
(b) insert a resolution of the identity $\int d p|p\rangle\langle p|$ to write

$$
\begin{aligned}
G & =(2 \pi \hbar)^{-1} \int_{-\infty}^{\infty} d p \exp \left(\frac{i}{\hbar}\left(x_{2}-x_{1}\right) p\right) \exp \left(-\frac{i}{\hbar}\left(t_{2}-t_{1}\right) \frac{p^{2}}{2 m}\right) \\
& =\exp \left(\frac{i m\left(x_{2}-x_{1}\right)^{2}}{2 \hbar\left(t_{2}-t_{1}\right)}\right) \sqrt{\frac{m}{2 \pi i \hbar\left(t_{2}-t_{1}\right)}}
\end{aligned}
$$

(c) Feynman's path integral formula: $G\left(x_{2}, t_{2} ; x_{1}, t_{1}\right) \propto \sum_{\text {paths }} \exp \left(\frac{i}{\hbar} S_{\text {path }}\right)$. In the semiclassical limit only classical paths contribute; in this case there is a single classical path, so $G \propto e^{i S_{\text {class }} / \hbar}$; the proportionality constant contains fluctuations around the classical path.

