ANSWERS TO THE EXAM QUANTUM THEORY, 4 JANUARY 2021

 each item gives 2 points for a fully correct answer, grade $=$ total $\times 9 / 24+1$1. a) Expand $e^{i \beta \tau}$ in a Taylor series,

$$
\left[e^{i \beta \tau}, H\right]=\sum_{p=0}^{\infty}\left[\frac{1}{p!}(i \beta \tau)^{p}, H\right]=-\hbar \beta \sum_{p=1}^{\infty} \frac{1}{(p-1)!}(i \beta \tau)^{p-1}=-\hbar \beta e^{i \beta \tau}
$$

b) $H U|E\rangle=H e^{i \beta \tau}|E\rangle=e^{i \beta \tau} H|E\rangle+\hbar \beta e^{i \beta \tau}|E\rangle=(E+\hbar \beta)|E\rangle$. So eigenstate at eigenvalue $E+\hbar \beta$. Since U is unitary (for Hermitian τ), the norm of $U|E\rangle$ is conserved, equal to unity, so this state cannot be equal to zero.
c) Since β can take on any real value, the spectrum of H must be the entire real axis: continuous, unbounded.
2. a) $\left[a, a^{\dagger}\right]=i[p, q]=1 ; q=\left(a+a^{\dagger}\right) / \sqrt{2}, p=-i\left(a-a^{\dagger}\right) / \sqrt{2} ; q^{2}+p^{2}=$ $a a^{\dagger}+a^{\dagger} a=2 a^{\dagger} a+1 ; \Rightarrow R(\theta)=e^{i \theta / 2} e^{i \theta a^{\dagger} a}$.
b) $d b / d \theta=R^{\dagger}(\theta)\left[a, i a^{\dagger} a\right] R(\theta)=i b(\theta) \Rightarrow b(\theta)=e^{i \theta} b(0)=e^{i \theta} a$.
c) $R^{\dagger}(\theta) q R(\theta)=2^{-1 / 2} e^{i \theta} a+2^{-1 / 2} e^{-i \theta} a^{\dagger}=q \cos \theta-p \sin \theta$,
hence $R^{\dagger}(-\pi / 2) q R(-\pi / 2)=p$, so the eigenstates transform as
$R^{\dagger}(-\pi / 2)|s\rangle_{q}=|s\rangle_{p}$ and $R^{\dagger}(-\pi / 2)|s\rangle_{q}=R(\pi / 2)|s\rangle_{q}$.
3. a) The velocity, which is a physical observable, cannot depend on the choice of gauge, so $\phi \mapsto \phi+(2 e / \hbar) \chi$ to cancel the change in \vec{A}.
b) $F=\oint_{\delta S}(\vec{A}+m \vec{v} / e) \cdot d \vec{l}=(1 / \hbar) \oint_{\delta S} \nabla \phi \cdot d \vec{l}=(\hbar / 2 e) \Delta \phi$, where $\Delta \phi$ is the change in ϕ on going once around the perimeter δS. Because the wave function must be single-valued, $\Delta \phi$ must be an integer multiple of 2π, hence F must be an integer multiple of $2 \pi \hbar / 2 e=h / 2 e$.
c) A change in flux by $h / 2 e$ is represented by a change in the vector potential in the superconducting disc by $\delta \vec{A}=(\hbar / 2 e) \hat{\theta} / r$, in polar coordinates r, θ. I can remove this change by a gauge transformation with $\chi=-(\hbar / 2 e) \theta$, which changes the phase by $\delta \phi=-\theta$, leaving the velocity unaffected. The phase remains single-valued, so this is allowed.
The Byers-Yang theorem says that all physical properties are periodic with period h / e, a periodicity $h / 2 e$ still satisfies that requirement.
4. a)

$$
E(L)=\frac{\pi \hbar c}{2 L} \sum_{n=1}^{\infty} n e^{-\alpha n}, \text { with } \alpha=\frac{\pi}{L k_{c}}
$$

and then substitute $\sum_{n=1}^{\infty} n e^{-\alpha n}=1 / \alpha^{2}-1 / 12+\operatorname{order}\left(\alpha^{2}\right)$.
b) $E_{\text {tot }}(a, b)=E(a)+E(b)=\frac{1}{2} \pi \hbar c\left((a+b) k_{c}^{2} / \pi^{2}-1 / 12 a-1 / 12 b\right)$
c) Vary a at fixed $L=a+b$, so $b=L-a$; $F=-d E_{\text {tot }}(a, L-a) / d a=$ $-\frac{1}{2} \pi \hbar c\left(1 / 12 a^{2}-1 / 12(L-a)^{2}\right) \rightarrow-\pi \hbar c / 24 a^{2}$.
The force points to the right in the figure.
For more on this calculation of the Casimir effect, see

