Answers to the Exam Quantum Theory, 5 JANUARy 2018

 each item gives 2 points for a fully correct answer, grade $=$ total $\times 9 / 24+1$1. (a) $\rho^{2} \neq \rho$, so the particle is in a mixed state.
(b) $\left\langle S_{z}\right\rangle=\operatorname{Tr} S_{z} \rho=1 / 4$
(c) $\rho=|0\rangle\langle 0|=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), \rho^{2}=\rho$, so the particle is in a pure state.
2. (a) The difference between $H=(\boldsymbol{p}-e \boldsymbol{A})^{2} / 2 m$ and $H^{\prime}=\left(\boldsymbol{p}-e \boldsymbol{A}^{\prime}\right)^{2} / 2 m$ is a different choice of vector potential, $\boldsymbol{A}=B(0, x, 0)$ and $\boldsymbol{A}^{\prime}=(B / 2)(-y, x, 0)$; both vector potentials give the same magnetic field $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ so the energy spectrum of H and H^{\prime} must be the same; another way to see this, is to note that H and H^{\prime} are related by a unitary transformation: $H^{\prime}=$ $e^{-i x y e B / 2 \hbar} H e^{i x y e B / 2 \hbar}$.
(b) $\left[a, a^{\dagger}\right]=(2 e \hbar B)^{-1} 2\left[p_{x}, i e B x\right]=1$, since $p_{x}=-i \hbar \partial / \partial x$.
(c) $a^{\dagger} a=(2 e \hbar B)^{-1}\left(p_{x}^{2}+\left(p_{y}-e B x\right)^{2}-i e B\left[p_{x}, x\right]\right)=(m / e \hbar B) H-1 / 2$. This is the Hamiltonian of a harmonic oscillator with frequency $\omega=e B / m$, so the energy levels (Landau levels) are at $E_{n}=(n+1 / 2) \hbar \omega, n=0,1,2, \ldots$.
3. (a) The momentum $p=m v+e A$ in the Bohr-Sommerfeld rule is the canonical momentum, not just the mechanical momentum.
(b) The contribution to $\oint p \cdot d q$ from the electromagnetic momentum is $e \oint A \cdot d q=-e B \pi l_{\text {cycl }}^{2}=-2 \pi m E / e B$, which gives $E_{n}=\hbar \omega_{n}(n+1 / 2)$. It differs from Nicandro's answer by a factor two.
(c) For massless electrons we have $E=p v, l_{\text {cycl }}=p / e B$, so $\oint p \cdot d q=$ $p \times 2 \pi l_{\text {cycl }}-e B \times \pi l_{\text {cycl }}^{2}=\pi p^{2} / e B=\pi E^{2} /\left(e B \nu^{2}\right)$; the quantization is $E_{n}^{2}=2 \hbar e B v^{2}(n+\gamma)$; the offset $\gamma=0$ because the phase shift from the turning points is canceled by the Berry phase.
4. (a) $U^{\dagger}=e^{(i t / \hbar) H}=U^{-1} ; i \hbar \partial \psi / \partial t=H U(t) \psi(0)=H \psi(t)$.
(b) insert the resolution of the identity: $G\left(x, x_{0} ; t\right)=\int d p\langle x \mid p\rangle\langle p| U(t)\left|x_{0}\right\rangle=$ $\int d p\langle x \mid p\rangle\left\langle p \mid x_{0}\right\rangle U(t)$ and then substitute $\langle x \mid p\rangle=(2 \pi \hbar)^{-1 / 2} e^{i p x / \hbar}$; $G\left(x, x_{0} ; 0\right)=\delta\left(x-x_{0}\right)$, because $\delta(x)=(2 \pi)^{-1} \int d k e^{i k x}$.
(c) The exponent $m\left(x-x_{0}\right)^{2} / 2 t$ equals the action along the classical path, $S_{\text {classical }}=t p^{2} / 2 m=\left(x-x_{0}\right)^{2} m / 2 t$, so $G \propto \exp \left(i S_{\text {classical }} / \hbar\right)$. This is the dominant contribution in the $\hbar \rightarrow 0$ limit. Fluctuations around the classical path give the prefactor of the propagator.
