ANSWERS TO THE EXAM QUANTUM THEORY, 13 FEBRUARY 2017 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

1. *(a)*

$$\frac{d}{dt}\mathrm{Tr}\,\rho(t) = \frac{1}{i\hbar}\mathrm{Tr}\,[\hat{H},\hat{\rho}(t)] = 0.$$

(b) Define $\hat{F}(t) = \hat{\rho}^2(t) - \hat{\rho}(t)$, then calculate

$$i\hbar \frac{\partial \hat{F}}{\partial t} = \hat{\rho}[\hat{H},\hat{\rho}] + [\hat{H},\hat{\rho}]\hat{\rho} - [\hat{H},\hat{\rho}] = [\hat{H},\hat{F}],$$

so $\hat{F}(t) = e^{-i\hat{H}t/\hbar}\hat{F}(0)e^{i\hat{H}t/\hbar}$, and since $\hat{F}(0) = 0$ it follows that $\hat{F}(t) = 0$. (c) $\hat{\rho} = |\psi\rangle\langle\psi|, \hat{\rho}\psi = \langle\psi|\psi\rangle\psi = \psi$.

2. (*a*) \hat{P} is Hermitian if $\hat{P} = \hat{P}^{\dagger}$, with the Hermitian conjugate \hat{P}^{\dagger} defined by $\langle \phi | \hat{P} \psi \rangle = \langle \hat{P}^{\dagger} \phi | \psi \rangle$; the parity operator is Hermitian because

$$\langle \phi | \hat{P} \psi \rangle = \int dx \, \phi^*(x) \hat{P} \psi(x) = \int dx \, \phi^*(x) \psi(-x) = \int dx \, \phi^*(-x) \psi(x) = \langle \hat{P}^{\dagger} \phi | \psi \rangle$$

(*b*) $\hat{P}^2 = I$ equals the identity operator *I*, so $\hat{P}^{-1} = \hat{P} = \hat{P}^{\dagger}$, which is the definition of a unitary operator; the eigenvalues satisfy $p^2 = 1 \rightarrow p = \pm 1$. (*c*) If ψ is an eigenstate of \hat{H} with a nondegenerate eigenvalue *E*, and \hat{P} commutes with \hat{H} , then also $\hat{P}\psi$ is an eigenstate of \hat{H} with the same eigenvalue *E*, since $\hat{H}\hat{P}\psi = \hat{P}\hat{H}\psi = E\hat{P}\psi$; if *E* is nondegenerate, the two eigenstates ψ and $\hat{P}\psi$ must be linearly related, so we must have $\hat{P}\psi = \lambda\psi$ for some number λ , hence ψ is an eigenfunction of the parity operator, hence either $\lambda = +1$ and $\psi(x) = \psi(-x)$ (even function) or $\lambda = -1$ and $\psi(x) = -\psi(-x)$ (odd function).

- 3. (a) $U = \exp(-(i/\hbar)ef(q))$, so $U^{-1}(p eA)U = p edf/dq eA = p e\tilde{A}$ (b) A unitary transformation leaves the eigenvalues unchanged, so the lowest energy of \tilde{H} and H are the same; if we choose $f = -\frac{1}{2}A_0q^2$, the vector potential disappears from \tilde{H} , therefore $E_0 = 0$ for any A_0 . (c) The gauge transformation with f = -qBR/2 does remove the vector potential from the Hamiltonian, but the transformed wave function $\tilde{\psi}(q) =$ $e^{(i/\hbar)eqBR/2}\psi(q)$ no longer satisfies the periodic boundary condition $\tilde{\psi}(q + 2\pi R) = \psi(q)$, unless $e\pi BR^2$ is a multiple of $2\pi\hbar$. The lowest energy is periodic in *B* with period $\Delta B = 2\pi\hbar/(e\pi R^2)$. Within one period the dependence on *B* is parabolic, $E_0 = (eBR/2)^2/2m$.
- 4. (*a*) $H^2 = v^2(p_x^2 + p_y^2)$ times the unit matrix, so $E^2 = v^2(p_x^2 + p_y^2)$; there are positive and negative energies, without a lowest energy. (*b*) first choice:

$$H\psi_1 = i(eBx - \hbar k)f(x) - i\hbar f'(x) = 0 \Rightarrow f(x) = \exp(eBx^2/2\hbar - kx)f(0)$$

— fails because it is not normalizable; second choice

$$H\psi_2 = -i(eBx - \hbar k)f(x) - i\hbar f'(x) = 0 \Rightarrow f(x) = \exp(-eBx^2/2\hbar + kx)f(0)$$

is normalizable, so we have found our zero-energy eigenfunction.

(c) At zero energy the only phase shift accumulated along a periodic orbit is at the turning points, twice $-\pi/2$, plus the Berry phase of π from the circulating spin in graphene, so the net phase shift is zero, hence there is a bound state at zero energy.