ANSWERS TO THE EXAM QUANTUM THEORy, 9 JANUARy 2017

 each item gives 2 points for a fully correct answer, grade $=$ total $\times 9 / 24+1$1. (a)

$$
\left\langle n^{\prime}\right| \hat{x}(t)|n\rangle=\left\langle n^{\prime}\right| e^{i \hat{H} t / \hbar} \hat{x} e^{-i \hat{H} t / \hbar}|n\rangle=e^{(i t / \hbar)\left(E_{n^{\prime}}-E_{n}\right)}\left\langle n^{\prime}\right| \hat{x}|n\rangle
$$

b)
$i \hbar d \hat{x} / d t=[\hat{x}, \hat{H}]=i \hbar \omega \hat{p}, i \hbar d \hat{p} / d t=[\hat{p}, \hat{H}]=-i \hbar \omega \hat{x}$.
$d^{2} \hat{x} / d t^{2}=-\omega^{2} \hat{x} \Rightarrow \hat{x}(t)=C_{1} \cos \omega t+C_{2} \sin \omega t$, initial conditions give $C_{1}=\hat{x}(0), \omega C_{2}=\hat{x}^{\prime}(0)=\omega \hat{p}(0)$.
(c) Equate terms with positive and negative frequency. For $E_{n^{\prime}}>E_{n}$ we must have $Q_{+}=0$ and

$$
e^{(i t / \hbar)\left(E_{n^{\prime}}-E_{n}\right)}\left\langle n^{\prime}\right| \hat{x}|n\rangle=\frac{1}{2} e^{i \omega t} Q_{-}=e^{i \omega t}\left\langle n^{\prime}\right| \hat{x}|n\rangle .
$$

Alternatively, you can equate cosine and sine terms,
$\cos \frac{t\left(E_{n^{\prime}}-E_{n}\right)}{\hbar}\left\langle n^{\prime}\right| \hat{x}|n\rangle+i \sin \frac{t\left(E_{n^{\prime}}-E_{n}\right)}{\hbar}\left\langle n^{\prime}\right| \hat{x}|n\rangle=\cos \omega t\left\langle n^{\prime}\right| \hat{x}|n\rangle+\sin \omega t\left\langle n^{\prime}\right| \hat{p}|n\rangle$,
to conclude that either $\left\langle n^{\prime}\right| \hat{x}|n\rangle=0$ or $\hbar \omega=\left|E_{n^{\prime}}-E_{n}\right|=E_{n^{\prime}}-E_{n}$, since $E_{n^{\prime}}>E_{n}$.
2. (a) $\langle 0| \hat{x}^{2}|0\rangle=(1 / 2)\langle 0| \hat{a} \hat{a}^{\dagger}|0\rangle=1 / 2,\langle 0| \hat{p}^{2}|0\rangle=(1 / 2)\langle 0| \hat{a} \hat{a}^{\dagger}|0\rangle=1 / 2$
(b) define $|\psi\rangle=\hat{a}^{\dagger}|N\rangle$, then

$$
\hat{a}^{\dagger} \hat{a}|\psi\rangle=\hat{a}^{\dagger}\left(\hat{a}^{\dagger} \hat{a}+1\right)|N\rangle=(N+1)|\psi\rangle
$$

so $|\psi\rangle=C|N+1\rangle$. The coefficient $C=(N+1)^{1 / 2}$ follows from $\langle\psi \mid \psi\rangle=$ $\langle N| \hat{a}^{\dagger} \hat{a}+1|N\rangle=N+1=C^{2}$.
(c) the expectation values of \hat{x} and \hat{p} vanish because $\langle N| \hat{a}^{\dagger}|N\rangle \propto\langle N| N+$ $1\rangle=0$ and $\langle N| \hat{a}|N\rangle \propto\langle N+1 \mid N\rangle=0$.
the second moment follows from $\langle N| \hat{x}^{2}|N\rangle=\frac{1}{2}\langle 0| \hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}|0\rangle=\frac{1}{2}(2 N+1)$, and similarly for the momentum.
3. (a) Denote by ϕ^{\prime} the phase shift accumulated on going from beam splitter 1 to beam splitter 2 ; the amplitude of the transmitted wave is

$$
\Psi_{\text {out }}=\frac{1}{2} \Psi_{\text {in }} e^{i \phi^{\prime}}\left[1+\frac{1}{2} e^{i \phi}+\left(\frac{1}{2} e^{i \phi}\right)^{2}+\left(\frac{1}{2} e^{i \phi}\right)^{3}+\cdots\right]=\frac{\frac{1}{2} \Psi_{\text {in }} e^{i \phi^{\prime}}}{1-\frac{1}{2} e^{i \phi}} .
$$

The absolute value squared of $\Psi_{\text {out }} / \Psi_{\text {in }}$ then gives $T=\frac{1}{4}\left(1+\frac{1}{4}-\cos \phi\right)^{-1}$. (b) Constructive interference of the waves at beam splitter 2 for $\phi=0$ gives resonant transmission with unit probability. Destructive interference for $\phi=\pi$ gives a joint transmission probability $1 / 9$ smaller than the product of the two individual transmission probabilities.
(c) For an enclosed flux $\Phi=B L^{2}$ the electron picks up an Aharonov-Bohm phase $2 \pi \Phi е / h$ which adds to ϕ, so the transmission probability oscillates between $1 / 9$ and 1 with period $\Delta \Phi=h / e \Rightarrow \Delta B=L^{-2} h / e$.
4. (a) free motion at constant velocity $\dot{x}=v=\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right)$, so the action is $S_{\text {class }}=\frac{1}{2} m v^{2}\left(t_{2}-t_{1}\right)=\frac{1}{2} m\left(x_{2}-x_{1}\right)^{2} /\left(t_{2}-t_{1}\right)$.
(b) insert a resolution of the identity $\int d p|p\rangle\langle p|$ to write

$$
\begin{aligned}
G & =(2 \pi \hbar)^{-1} \int_{-\infty}^{\infty} d p \exp \left(\frac{i}{\hbar}\left(x_{2}-x_{1}\right) p\right) \exp \left(-\frac{i}{\hbar}\left(t_{2}-t_{1}\right) \frac{p^{2}}{2 m}\right) \\
& =\exp \left(\frac{i m\left(x_{2}-x_{1}\right)^{2}}{2 \hbar\left(t_{2}-t_{1}\right)}\right) \sqrt{\frac{m}{2 \pi i \hbar\left(t_{2}-t_{1}\right)}}
\end{aligned}
$$

(c) Feynman's path integral formula: $G\left(x_{2}, t_{2} ; x_{1}, t_{1}\right) \propto \sum_{\text {paths }} \exp \left(\frac{i}{\hbar} S_{\text {path }}\right)$. In the semiclassical limit only classical paths contribute; in this case there is a single classical path, so $G \propto e^{i S_{\text {class }} / \hbar}$; the proportionality constant contains fluctuations around the classical path.

