ANSWERS TO THE EXAM QUANTUM THEORY, 21 DECEMBER 2015 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

1. *a*) a density matrix should be Hermitian, it should have trace 1, and all its eigenvalues should be ≥ 0 .

b) $\hat{\rho}_1$ has a negative eigenvalue -1/3, $\hat{\rho}_2$ is not Hermitian, so neither is a density matrix; $\hat{\rho}_3$ is Hermitian, has trace 1, and eigenvalues 0 and 1, so it is a density matrix.

c) a pure state has $\hat{\rho}^2 = \hat{\rho}$, only $\hat{\rho}_4$ satisfies: it is the density matrix $|\psi\rangle\langle\psi|$ of the pure state $|\psi\rangle = 2^{-1/2}(|0\rangle + |1\rangle)$.

2. *a*) $\hat{S}^{\dagger}(r) = \hat{S}(-r) = \hat{S}^{-1}(r)$. *b*) $\langle r|\hat{a}|r \rangle = 0$, $\langle r|\hat{a}^2|r \rangle = -\frac{1}{2}\sinh 2r = \langle r|(\hat{a}^{\dagger})^2|r \rangle$, $\langle r|\hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a}|r \rangle = \cosh 2r$, so $\langle r|(\hat{a}^2 + (\hat{a}^{\dagger})^2) = \cosh 2r - \sinh 2r = e^{-2r}$. *c*) the Heisenberg uncertainty principle says that $\operatorname{Var} x \times \operatorname{Var} p \ge 1/4$, here the minimum uncertainty is reached; for large positive r the uncertainty in

the minimum uncertainty is reached; for large positive r the uncertainty in position is much smaller than in momentum (hence the name "squeezed" state).

3. *a*) the *N*-th level has $\oint p dx = N \times 2\pi\hbar$, with $E = V(x) + p^2/2m$; the integral extends over one period of the motion, so from *a* to *b* and back to *a*; this is a good approximation for $N \gg 1$.

b) $dN/dE = (m/\pi\hbar) \int_a^b p^{-1} dx = (\pi\hbar)^{-1} \int_a^b v^{-1} dx = T/\pi\hbar$. c) There are two soft turning points, so $\gamma = 2 \times \pi/2$, and the Bohr-Sommerfeld quantization rule is $\oint p dx = (n + 1/2)2\pi\hbar$; the turning points for $V(x) = \sqrt{\pi}$

 cx^2 are at $\pm \sqrt{E/c}$; for the lowest level (n = 0) we have $\pi\hbar = 4(2m)^{1/2} \int_0^{\sqrt{E/c}} (E - cx^2)^{1/2} dx = 4(2mE)^{1/2} \times (E/c)^{1/2} \times \int_0^1 \sqrt{1 - x^2} dx = \pi E(2m/c)^{1/2}$, so the energy of the lowest level is $E = \hbar (c/2m)^{1/2}$.

4. a) $d\vec{r}/dt = (i/\hbar)[H,\vec{r}] = (1/m)(\vec{p} - q\vec{A})$ b) $\exp(iq\chi/\hbar)(\vec{p} - q\vec{A})^2 \exp(-iq\chi/\hbar) = [\exp(iq\chi/\hbar)(\vec{p} - q\vec{A}) \exp(-iq\chi/\hbar)]^2 = (\vec{p} - q\vec{A} - q\nabla\chi)^2 = (\vec{p} - q\vec{A}')^2$

c) H' is related to H by a unitary transformation, so it represents the same system described in a different basis.