Answers to the Exam Quantum Theory, RETAKE, 12 JANUARY 2014 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

- 1. a) $\langle \psi | \rho \psi \rangle = \sum_{n} p_{n} |\langle \psi | \psi_{n} \rangle|^{2} \ge 0.$ b) $d\rho/dt = \sum_{n} p_{n} (|d\Psi_{n}/dt\rangle \langle \Psi_{n}| + |\Psi_{n}\rangle \langle d\Psi_{n}/dt|) = (-i/\hbar) \sum_{n} p_{n} (H|\Psi_{n}\rangle \langle \Psi_{n}| - |\Psi_{n}\rangle \langle \Psi_{n}|H) = (-i/\hbar) [H, \rho].$ c) $\rho(t) = e^{-iHt/\hbar} \rho(0) e^{iHt/\hbar}$ so $\rho^{2}(t) - \rho(t) = e^{-iHt/\hbar} [\rho^{2}(0) - \rho(0)] e^{iHt/\hbar}$ and $\rho^{2}(0) - \rho(0) = e^{iHt/\hbar} [\rho^{2}(t) - \rho(t)] e^{-iHt/\hbar}$; hence $\rho^{2}(t) = \rho(t) \Leftrightarrow \rho^{2}(0) = \rho(0).$
- 2. *a*) *dE_n/dλ* = (*d*/*dλ*)⟨*n*, *λ*|*H*(*λ*)|*n*, *λ*⟩ = ⟨*n*, *λ*|∂*H*/∂*λ*|*n*, *λ*⟩ plus a term consisting of the integral ∫[(*Hψ*)*∂*ψ*/∂*λ* + (∂*ψ**/∂*λ*)*Hψ*]*dx*, with *ψ* the eigenstate of *H*. Because *Hψ* = *E_n*(*λ*)*ψ*, this integral can also be written as *E_n*(*λ*) ∫[*ψ**∂*ψ*/∂*λ* + (∂*ψ**/∂*λ*)*ψ*]*dx* = *E_n*(*λ*)(*d*/*dλ*) ∫|*ψ*|²*dx* = 0 because of the normalization of *ψ*. *b*) the operator *p_z* = -*iħ*∂/∂*z* commutes with *H*, so the Heisenberg equation of motion gives *dp_z*/*dt* = 0. The velocity operator *v_z* = (*p_z eBy*)/*m* does not commute with *H*, so the velocity along the wire is not conserved. *c*) the velocity operator in the *z*-direction is *y* = ∂*H*/∂*n* : now use the

c) the velocity operator in the *z*-direction is $v_z = \partial H / \partial p_z$; now use the Hellman-Feynman theorem, $\langle v_z \rangle = dE(p_z)/dp_z$.

- 3. *a*) the flux is $\Phi = \pi |B|R_c^2 = \pi |B|(2mE)/(qB)^2$, so quantization gives $E_n = \hbar(|qB|/m)(n + \frac{1}{2})$. The ground state is $E_0 = |qB| \times (\hbar/2m)$. *b*) In graphene $E_n = \text{constant} \times \sqrt{n|B|}$, so it increases more slowly with |B| and is zero for n = 0. *c*) motion along *z* is independent of motion in *x*-*y* plane, adds $p_z^2/2m = (\hbar k)^2/2m$ to the energy; $E_n(k) = (n + 1/2)\hbar |qB|/m + \hbar^2 k^2/2m$, so spacing is $\hbar |qB|/m$.
- 4. *a*) The trace of H(t) is zero, so the eigenvalues are $\pm E$, and the determinant is $-(\hbar e/2m)^2 B_0^2 = -E^2$, so the eigenvalues are $\pm \hbar e B_0/2m = \pm \frac{1}{2}\hbar\omega_0$. *b*) The state $\psi(0)$ is an eigenstate of H(0) with eigenvalue $E = -\frac{1}{2}\hbar\omega_0$, so the dynamical phase is $c_1T = -iET/\hbar$ with $c_1 = \frac{1}{2}\omega_0$. *c*) The normalized and single-valued eigenstate of H(t) with eigenvalue $E = -\frac{1}{2}\hbar\omega_0$ is $|t\rangle = 2^{-1/2}(1, e^{2\pi i t/T})$. The Berry phase is given by $c_0 = i \int_0^T dt \langle t | \frac{d}{dt} | t \rangle = i \int_0^T dt \frac{1}{2}(2\pi i/T) {\binom{1}{e^{-2\pi i t/T}}} \cdot {\binom{0}{e^{2\pi i t/T}}} = -\pi$.