ANSWERS TO THE EXAM QUANTUM THEORY, 22 DECEMBER 2014 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

- 1. a) $\bar{A} = \langle \Psi | A | \Psi \rangle = \langle e^{-iH_0 t/\hbar} \Psi_{\mathrm{I}} | e^{-iH_0 t/\hbar} A_{\mathrm{I}} e^{iH_0 t/\hbar} | e^{-iH_0 t/\hbar} \Psi_{\mathrm{I}} \rangle = \langle \Psi_{\mathrm{I}} | A_{\mathrm{I}} | \Psi_{\mathrm{I}} \rangle.$ b) $dA_{\mathrm{I}}/dt = (i/\hbar)H_0A_{\mathrm{I}} - (i/\hbar)A_{\mathrm{I}}H_0 = (i/\hbar)[H_0, A_{\mathrm{I}}].$ c) $i\hbar d\Psi/dt = H\Psi \rightarrow i\hbar d\Psi_{\mathrm{I}}/dt = -H_0\Psi_{\mathrm{I}} + e^{iH_0 t/\hbar}H\Psi = (-H_0 + H_{\mathrm{I}})\Psi_{\mathrm{I}} = V_{\mathrm{I}}\Psi_{\mathrm{I}}.$
- 2. *a*) ⟨Ψ̃|Ψ̃⟩ = ⟨Ψ̃₁|Ψ̃₁⟩ + ⟨Ψ̃₁|Ψ̃₁⟩ = ⟨Ψ₁|Ψ₁⟩* + ⟨Ψ₁|Ψ₁⟩* = ⟨Ψ|Ψ⟩* = 1; application of the operation twice gives (Ψ₁, Ψ₁) → (Ψ^{*}₁, -Ψ^{*}₁) → (-Ψ₁, -Ψ₁). *b*) application of *H* to (Ψ^{*}₁, -Ψ^{*}₁) gives for the first component (p²/2m + V)Ψ^{*}₁ (αp_x iαp_y)Ψ^{*}₁ = [(p²/2m + V)Ψ₁ + (αp_x + iαp_y)Ψ₁]* = EΨ^{*}₁. (Note that p^{*}_x = -p_x.) Similarly, for the second component we find -EΨ^{*}₁. So (Ψ^{*}₁, -Ψ^{*}₁) is an eigenstate of *H* at eigenvalue *E*. *c*) Suppose the two eigenstates are linearly related, then there is a complex coefficient λ ≠ 0 such that Ψ̃₁ = λΨ₁ and Ψ̃₁ = λΨ₁. This requires that Ψ^{*}₁ = λΨ₁ and -Ψ₁ = λ*Ψ^{*}₁, hence -Ψ₁ = λ*λΨ₁, which is only possible if Ψ₁ = 0. But then also Ψ₁ = 0, which is not possible because of the normalization. *Alternatively*, show that ⟨Ψ|Ψ̃⟩ = Ψ^{*}₁Ψ̃₁ + Ψ^{*}₁Ψ̃₁ = Ψ^{*}₁Ψ^{*}₁ Ψ^{*}₁Ψ^{*}₁ = 0.
- 3. a) $\langle \alpha | \beta \rangle = e^{-|\alpha|^2/2} \langle 0 | e^{\alpha^* a} | \beta \rangle = e^{-|\alpha|^2/2} e^{\alpha^* \beta} \langle 0 | \beta \rangle = e^{-|\alpha|^2/2 |\beta|^2/2} e^{\alpha^* \beta}$, hence $|\langle \alpha | \beta \rangle|^2 = e^{-|\alpha|^2 |\beta|^2} e^{\alpha^* \beta + \alpha \beta^*} = e^{-|\alpha \beta|^2}$. b) $\bar{n} = \langle \beta | a^\dagger a | \beta \rangle = \beta^* \beta$, $\bar{n}^2 = \langle \beta | (a^\dagger a)^2 | \beta \rangle = \langle \beta | (a^\dagger)^2 a^2 | \beta \rangle + \langle \beta | a^\dagger a | \beta \rangle = (\beta^* \beta)^2 + \beta^* \beta$, so var $n = \beta^* \beta = \bar{n}$. c) $\bar{n} = \operatorname{Tr} \rho a^\dagger a = p |\alpha|^2 + (1 - p) |\beta|^2$, $\bar{n}^2 = \operatorname{Tr} \rho (a^\dagger a)^2 = p (|\alpha|^4 + |\alpha|^2) + (1 - p) (|\beta|^4 + |\beta|^2)$, var $n = p(1 - p) (|\alpha|^2 - |\beta|^2)^2 + \bar{n} > \bar{n}$.
- 4. *a*) The wave function decays to zero for $x \to \pm \infty$, it is symmetric without a node for the ground state, it is antisymmetric with one node at x = 0 for the first excited state, and symmetric with two nodes for the second excited state.

b) There are two turning points where the velocity goes to zero smoothly, and these are associated with a phase shift of $-\pi/2$, so the total phase shift is $\gamma = -\pi$.

c) $E = p_x^2/2m + V_0|x| \rightarrow p_x = \pm \sqrt{2m(E - V_0|x|)};$ $\oint p_x dx = 4 \int_0^{E/V_0} \sqrt{2m(E - V_0x)} dx = \frac{8}{3}(2m)^{1/2}V_0^{-1}E^{3/2} = 2\pi\hbar(n+1/2);$ $E_n = (3\pi\hbar V_0/4)^{2/3}(2m)^{-1/3}(n+1/2)^{2/3}.$